Integrating Locomotor Subfunctions with Electric-Pneumatic Actuation

将运动子功能与电动气动驱动集成

基本信息

项目摘要

Compared to biological muscles, current technical actuators are limited in their performance and versatility to realize human-like locomotion. For resolving this problem we need to better understand biological legged locomotion which can be described in a three-level structure: 1) generation of the different locomotor subfunctions (LSF), namely stance, swing, and balance, 2) composition of LSFs for versatile legged locomotion and 3) LSF adaptation for various locomotion tasks and conditions. In order to overcome the actuator limitations for locomotion, we recently introduced the hybrid EPA actuator as a combination of electric and pneumatic actuators. The EPA design provides direct access to the control and morphological properties. We recently demonstrated that with the EPA, the actuator limitations could be clearly reduced for stance LSF in vertical hopping. In this follow-up project, we will explore the full potential of the EPA approach by extending its application to versatile locomotion following the above mentioned three levels. First, we want to understand how the EPA design and the corresponding control needs to be adapted to match different (isolated) LSFs. In the next level, we extend the EPA approach to multiple LSFs. Here we expect that the different LSFs interact in a modular way with a parsimonious exchange of sensory information. Finally, we will study the required adaptation of identified EPA modules to realize different locomotion tasks and conditions.The benefits of EPA based design and control will be validated with new bioinspired legged robots (EPA-Jumper and EPA-Walker), both modular and extendable to different body architectures and movement goals. By exploiting control embodiment (e.g., by implementing biarticular actuators), we will take advantage of the mechanical and functional properties of the human body, which can barely be replaced by using neural control. The EPA design will be optimized to minimize energy consumption and maximize robustness against perturbations over a defined range of movement conditions. Experimental data on human walking and hopping (with optional perturbations) will be used to optimize the EPA design and control. With the envisioned co-evolution of mechanics and control design, EPA technology enables new versatile, efficient, and robust locomotor systems for a wide range of applications. For this, we provide the required infrastructure to easily switch between different gait conditions with high energy efficiency and minimum control effort.
与生物肌肉相比,当前技术的致动器在其性能和通用性方面受到限制,无法实现类似人类的运动。为了解决这个问题,我们需要更好地理解生物腿运动,它可以在三个层次的结构中描述:1)不同运动子功能(LSF)的生成,即站立,摆动和平衡,2)LSF的组成,用于多功能腿运动和3)LSF适应各种运动任务和条件。为了克服驱动器的局限性,我们最近推出了混合EPA驱动器作为电动和气动驱动器的组合。EPA设计提供了直接访问控制和形态特性。我们最近证明,与EPA,致动器的限制,可以明显减少在垂直跳跃的立场LSF。在这个后续项目中,我们将探索EPA方法的全部潜力,将其应用扩展到上述三个层次的多功能运动。首先,我们想了解如何调整EPA设计和相应的控制,以匹配不同的(隔离的)LSF。在下一个层次中,我们将EPA方法扩展到多个LSF。在这里,我们期望不同的LSF以模块化的方式进行交互,并进行简约的感官信息交换。最后,我们将研究所需的适应确定EPA模块,以实现不同的运动任务和conditions.The EPA的设计和控制的好处将与新的生物启发腿式机器人(EPA跳线和EPA步行者),模块化和可扩展到不同的身体结构和运动目标进行验证。通过利用控制实施例(例如,通过实现双关节致动器),我们将利用人体的机械和功能特性,这几乎不能被使用神经控制所取代。EPA的设计将被优化,以最大限度地减少能源消耗,并在规定的运动条件范围内最大限度地提高对扰动的鲁棒性。人类行走和跳跃(可选扰动)的实验数据将用于优化EPA的设计和控制。随着机械和控制设计的共同发展,EPA技术为广泛的应用提供了新的多功能,高效和强大的动力系统。为此,我们提供了所需的基础设施,以高能效和最小的控制工作量轻松地在不同的步态条件之间切换。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Maziar Ahmad Sharbafi, Ph.D.其他文献

Dr.-Ing. Maziar Ahmad Sharbafi, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Maziar Ahmad Sharbafi, Ph.D.', 18)}}的其他基金

Hybrid Electric-Pneumatic Actuator (EPA) for legged locomotion
用于腿式运动的混合电动气动执行器 (EPA)
  • 批准号:
    361684937
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Spinal circuit mechanisms of motor adaptation using a complex locomotor sequence task.
使用复杂运动序列任务的运动适应的脊髓回路机制。
  • 批准号:
    24H00588
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Doctoral Dissertation Research: The Evolution of Locomotor Specializations in the Context of Adaptive Plasticity
博士论文研究:自适应可塑性背景下运动专业化的演变
  • 批准号:
    2341351
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Structural and functional assessment of the locomotor system and effective exercise intervention in elementary and junior high school students
中小学生运动系统结构功能评估及有效运动干预
  • 批准号:
    23K10774
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neural circuit architectures that encode three-dimensional locomotor dynamics
编码三维运动动力学的神经电路架构
  • 批准号:
    23KF0294
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
BRC-BIO: Trade-offs in locomotor performance: comparing hoppers and jumpers in variable environments
BRC-BIO:运动性能的权衡:比较可变环境中的漏斗和跳线
  • 批准号:
    2233366
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A multi-scale analysis of modularity and ontogenetic changes in morphology and locomotor biomechanics in the domestic dog
家犬形态和运动生物力学的模块化和个体发生变化的多尺度分析
  • 批准号:
    BB/X014819/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Mud to muscles: Dinosaur-bird locomotor evolution from fossil footprints
泥土到肌肉:恐龙-鸟类从化石足迹的运动进化
  • 批准号:
    EP/Y010159/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Study for influences of artificial selection for locomotor activity on anti-predator strategies and life history traits.
研究运动活动的人工选择对反捕食者策略和生活史特征的影响。
  • 批准号:
    23K14264
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Influence of fatigue in Parkinson's disease on gait performance and locomotor control mechanism
帕金森病疲劳对步态表现和运动控制机制的影响
  • 批准号:
    495209
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
NSF Postdoctoral Fellowship in Biology: Skeletal and behavioral underpinnings of extreme locomotor diversity in snakes
NSF 生物学博士后奖学金:蛇极端运动多样性的骨骼和行为基础
  • 批准号:
    2305218
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了