Finite Simple Groups and Related Codes, Lattices and Vertex Operator Algebras
有限简单群及相关代码、格和顶点算子代数
基本信息
- 批准号:12440003
- 负责人:
- 金额:$ 4.16万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied codes, lattices and vertex operator algebras related to finite simple groups. Main results are as follows :1.The classifications of the 2-and 3-radical subgroups of Fischer's simple groups F_<22>, F_<23>, F'_<24> have been completed.2.Even unimodular Gaussian lattices of dimension 12 have been classified.3.A sufficient condition for extremal Z_6-codes, and as an application, many Z_6-code related the Leech lattice had been constructed. Moreover the self-dual Z_6-codes of length 8 are classified.4.The construction method of unimodular lattices using ternary self-dual codes has been studied. Extremal odd unimodular lattices in dimensions 44, 60 and 68 are constructed for the first time.5.The constructions of vertex operator algebras using Z_8-codes and subalgebras V_<√<2>A_3> have been considered. We also give a complete decomposition of the Moonshine VOA V^* associated with some subalgebra given by an embedding of the lattice (√<2>A_3)^8 into the Leech lattice.6.By using Z_3-orbifold construction given by Dong-Mason, we give a complete decomposition of the Moonshine VOA V^* associated with some subalgebra given by an embedding of the lattice (√<2>A_2)^<12> the Leech lattice. We also give the explicit actions of certain 3A-elements of the Monster simple group on V^* are defined.
我们研究了与有限单群相关的码、格和顶点算子代数。主要结果如下:1.完成了Fischer单群F_<;22>;,F_<;23>;,F‘<;24>;的2-和3-根子群的分类。2.对12维么模高斯格进行了分类。3.给出了极值Z_6-码的一个充分条件,并作为应用,构造了许多与Leech格有关的Z_6-码。此外,还对长度为8的自对偶码进行了分类。4.研究了利用三元自对偶码构造么模格的方法。首次构造了44,60和68维的极值奇么模格。5.利用Z_8码及其子代数V_<;√<;2>;A_3>;构造了顶点算子代数。6.利用董梅森给出的Z_3-orbilold结构,我们给出了与嵌入到Leech格的子代数(√<;2>;A_2)^<;12>;(√<;2>;A_2)^<;12>;^<;12>;^<;12>;定义了Monster单群的某些3A-元在V^*上的显式作用。
项目成果
期刊论文数量(70)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Kitazume, M.Miyamoto: "3-transposition automorphism groups of VOA"Advanced Studies in Pure Mathematics. 32. 315-324 (2001)
M.Kitazume,M.Miyamoto:“美国之音的3-转置自同构群”纯数学高级研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kitazume, C.H.Lam, H.Yamada: "Moonshine Vertex Operator Algebra as L(1/2,0)【cross product】L(7/10,0)【cross product】L(4/5,0)【cross product】L(1,0)-modules"Journal of Pure and Applied Algebra. (発表予定). (2002)
M.Kitazume、C.H.Lam、H.Yamada:“Moonshine 顶点算子代数为 L(1/2,0)【叉积】L(7/10,0)【叉积】L(4/5,0)【叉积】L(1,0)-模《纯粹与应用代数杂志》。(待出版)。(2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kitazume, C.H.Lam, H.Yamada: "Moonshine Vertex Operator Algebra as L(1/2,0)【cross product】(7/1O,0)【cross product】(4/5,0)【cross product】(1,0)-modules"Journal of Pure and Applied Algebra. 173. 15-48 (2002)
M.Kitazume、C.H.Lam、H.Yamada:“Moonshine 顶点算子代数为 L(1/2,0)【叉积】(7/1O,0)【叉积】(4/5,0)【叉积” 】(1,0)-模》纯粹与应用代数学报. 173. 15-48 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kitazume,C.H.Lam,H.Yamada: "A class of vertex operator algebras constructed from Z_8 codes"Journal of Algebra. (発表予定). (2001)
M.Kitazume、C.H.Lam、H.Yamada:“由 Z_8 代码构造的一类顶点算子代数”《代数杂志》(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kitazume, C.H.Lam, H.Yamada: "Moonshine Vertex Operator Algebra as L(1/2, 0) 【cross product】 L(7/10, 0) 【cross product】 L(4/5, 0) 【cross product】 L(1, 0)-modules"Journal of Pure and Applied Algebra. 173. 15-48 (2002)
M.Kitazume、C.H.Lam、H.Yamada:“Moonshine 顶点算子代数为 L(1/2, 0) [叉积] L(7/10, 0) [叉积] L(4/5, 0) [叉积】 L(1, 0)-模》纯粹与应用代数学报. 173. 15-48 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KITAZUME Masaaki其他文献
KITAZUME Masaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KITAZUME Masaaki', 18)}}的其他基金
Study on algebraic or combinatorial structures whose automorphism groups contain finite simple groups
自同构群包含有限单群的代数或组合结构的研究
- 批准号:
19340002 - 财政年份:2007
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Finite Simple Groups and Related Codes, Lattices and Vertex Operator Algebras
有限简单群及相关代码、格和顶点算子代数
- 批准号:
15340002 - 财政年份:2003
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Finite Groups (Sporadic Simple Groups) and Related Topics
有限群(零星简单群)及相关主题
- 批准号:
09440006 - 财政年份:1997
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Resarch on simple groups with algebraic structures on which a finite simple group acts
有限单群作用于代数结构的单群研究
- 批准号:
16K05066 - 财政年份:2016
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The decision of decomposition numbers for the sporadic finite simple group J4
零散有限单群J4分解数的确定
- 批准号:
25400002 - 财政年份:2013
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The structure of a finite simple group and prime graphs
有限单群的结构和素图
- 批准号:
16540030 - 财政年份:2004
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Principal Simple-Group-Bundle over an Elliptic Surface
椭圆面上的主单群丛
- 批准号:
12640095 - 财政年份:2000
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Conformal Field Theories Associated with the Monster Simple Group
数学科学:与怪物简单群相关的共形场论
- 批准号:
9122030 - 财政年份:1992
- 资助金额:
$ 4.16万 - 项目类别:
Standard Grant