A study on relations between the theory of prehomogeneous vector spaces, the theory of group representations and the theory of automorphic forms
预齐次向量空间理论、群表示理论和自守形式理论之间的关系研究
基本信息
- 批准号:12440011
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, we investigated zeta functions of prehomogeneous vector spaces from the view points(1)relations between functional equations and representations of general linear groups,(2)relations to automorphic L-functions,(3)generalization of the theory to non-regular prehomogeneous vector spaces.(1)We showed that the functional equations of zeta functions are closely related to intertwining operators between degenerate principal series representations of general linear groups, and, using the relation, we obtained an integral expression of Eulerian type of the gamma matrices of functional equations. This enables us to identify the variable change in functional equations as an action of an element in the Weyl group of a general linear group, and to decompose functional equations into a product of more elementary functional equations. There exists a similar results for p-adic local zeta functions. As an application of p-adic theory, we investigated the Fourier coefficients … More of Elsenstein series of Sp(n) and GL(n) and the theory of spherical transforms on certain spherical homogeneous spaces.(2)We identified the Koecher-Maass series of real analytic Siegel Eisenstein series with a zeta function associated with a certain prehomogeneous vector space on which the Siegel parabolic subgroup of SO(n, n) acts. It is quite probable that this result can be extended to other classical groups. A considerable progress has been made in explicit calculation of zeta functions. We obtained an explicit expression of zeta functions in terms of the Riemann zeta function and the Mellin transforms of the Cohen Eisenstein series for more than 70 percent of irreducible regular reduced prehomogeneous vector spaces.(3)For non-regular prehomogeneous vector spaces, we developed a general theory of integral representations and the functional equation of the zeta integrals, which is a formal generalization of the theory for regular prehomogeneous vector spaces. We also gave the first example of explicit functional equations for non-regular spaces. Less
在该研究项目中,我们从观点(1)功能方程与一般线性组的功能方程和表示之间的关系之间的Zeta Zeta功能,(2)与自动形态L功能的关系,(3)理论将理论的概括性化为非规范的前载体空间之间的ZERINES函数,我们表明了Zeta的相互作用。一般线性基团的主序列表示,并使用这种关系,我们获得了功能方程的伽马级材料的欧拉类型的积分表达。这使我们能够识别功能方程的变化是通用线性组的Weyl组中元素的动作,并将功能方程分解为更基本功能方程的产物。 P-ADIC局部Zeta函数也存在类似的结果。 As an application of p-adic theory, we investigated the Fourier Coefficients … More of Elsenstein series of Sp(n) and GL(n) and the theory of spherical transforms on certain spherical homogeneous spaces.(2)We identified the Koecher-Maass series of real analytic Siegel Eisenstein series with a zeta function associated with a certain prehomogeneous vector space on which the Siegel parabolic SO(N,N)行为的亚组。可以将此结果扩展到其他古典群体是很有问题的。在明确计算Zeta功能方面取得了很大进展。 We obtained an explicit expression of zeta functions in terms of the Riemann zeta function and the Mellin transforms of the Cohen Eisenstein series for more than 70 percent of irreducible regular reduced prehomogeneous vector spaces.(3)For non-regular prehomogeneous vector spaces, we developed a general theory of integral representations and the functional equation of the zeta integrals, which is a Formal generalization定期均匀前载体空间的理论。我们还为非规范空间提供了明确的功能方程的第一个示例。较少的
项目成果
期刊论文数量(174)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Yamada: "Segre threefold and $N=3$ reflection equation"Phys.Lett.A. 298. 350-360 (2002)
Y.Yamada:“Segre 三重和 $N=3$ 反射方程”Phys.Lett.A。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ibukiyama: "On "easy" zeta functions"Sugaku Expositions. 14. 191-204 (2001)
T.Ibukiyama:“论“简单”zeta 函数”朱乐阐述。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
F.Sato: "Local densities of representations of quadratic forms over p-adic integers : the non-dyadic case"J.Number Theory. 83. 106-136 (2000)
F.Sato:“p 进整数上二次形式表示的局部密度:非二进情况”J.数论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yumiko Hironaka: "A remark on Kitaoka's power series attached to local densities"Comment. Math. Univ. St. Pauli. 50. 141-146 (2001)
Yumiko Hironaka:“关于北冈幂级数与局部密度相关的评论”评论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Gyoja: "A duality theorem for homomorphisms between generalzied Verma modules"J.Math.Kyoto Univ.. 40. 437-450 (2000)
A.Gyoja:“广义 Verma 模块之间同态的对偶定理”J.Math.Kyoto Univ.. 40. 437-450 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATO Fumihiro其他文献
SATO Fumihiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATO Fumihiro', 18)}}的其他基金
Zeta functions associated with automorphic distributions and an analytic number theory of quartic forms
与自守分布相关的 Zeta 函数和四次形式的解析数论
- 批准号:
24540029 - 财政年份:2012
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of automated home treatment system that allows continued hyperthermia cancer radical treatment
开发自动化家庭治疗系统,可持续进行癌症根治性热疗
- 批准号:
22300174 - 财政年份:2010
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The construction of breast cancer automatic care system using micro-implanted element
微植入元件乳腺癌自动护理系统的构建
- 批准号:
20680028 - 财政年份:2008
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Researches on zeta functions of prehomogeneous vector spaces
预齐次向量空间zeta函数研究
- 批准号:
20540028 - 财政年份:2008
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation between automorphic forms and zeta functions associated with prehomogeneous vector spaces
自同构形式和与预齐次向量空间相关的 zeta 函数之间的关系
- 批准号:
16340012 - 财政年份:2004
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
多功能球形核酸胶囊的制备及其在肿瘤靶向治疗的应用及机制研究
- 批准号:22372049
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于低温等离子体场聚合物功能粉体球形化机理的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
仿生型IL-2球形纳米制剂诱导Tregs内源性扩增免疫调节心肌梗死后心室重塑的功能及机制研究
- 批准号:82100527
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于低温等离子体场聚合物功能粉体球形化机理的研究
- 批准号:52173041
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
仿生型IL-2球形纳米制剂诱导Tregs内源性扩增免疫调节心肌梗死后心室重塑的功能及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Spherical Slepian function modelling of the magnetic field to probe the outer core
用于探测外核的磁场的球形 Slepian 函数建模
- 批准号:
1960295 - 财政年份:2017
- 资助金额:
$ 6.91万 - 项目类别:
Studentship