A study on relations between the theory of prehomogeneous vector spaces, the theory of group representations and the theory of automorphic forms

预齐次向量空间理论、群表示理论和自守形式理论之间的关系研究

基本信息

  • 批准号:
    12440011
  • 负责人:
  • 金额:
    $ 6.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2003
  • 项目状态:
    已结题

项目摘要

In this research project, we investigated zeta functions of prehomogeneous vector spaces from the view points(1)relations between functional equations and representations of general linear groups,(2)relations to automorphic L-functions,(3)generalization of the theory to non-regular prehomogeneous vector spaces.(1)We showed that the functional equations of zeta functions are closely related to intertwining operators between degenerate principal series representations of general linear groups, and, using the relation, we obtained an integral expression of Eulerian type of the gamma matrices of functional equations. This enables us to identify the variable change in functional equations as an action of an element in the Weyl group of a general linear group, and to decompose functional equations into a product of more elementary functional equations. There exists a similar results for p-adic local zeta functions. As an application of p-adic theory, we investigated the Fourier coefficients … More of Elsenstein series of Sp(n) and GL(n) and the theory of spherical transforms on certain spherical homogeneous spaces.(2)We identified the Koecher-Maass series of real analytic Siegel Eisenstein series with a zeta function associated with a certain prehomogeneous vector space on which the Siegel parabolic subgroup of SO(n, n) acts. It is quite probable that this result can be extended to other classical groups. A considerable progress has been made in explicit calculation of zeta functions. We obtained an explicit expression of zeta functions in terms of the Riemann zeta function and the Mellin transforms of the Cohen Eisenstein series for more than 70 percent of irreducible regular reduced prehomogeneous vector spaces.(3)For non-regular prehomogeneous vector spaces, we developed a general theory of integral representations and the functional equation of the zeta integrals, which is a formal generalization of the theory for regular prehomogeneous vector spaces. We also gave the first example of explicit functional equations for non-regular spaces. Less
In this research project, we investigated zeta functions of prehomogeneous vector spaces from the view points(1)relations between functional equations and representations of general linear groups,(2)relations to automorphic L-functions,(3)generalization of the theory to non-regular prehomogeneous vector spaces.(1)We showed that the functional equations of zeta functions are closely related to intertwining operators between degenerate principal series representations of general linear groups, and, using the relation, we obtained an integral expression of Eulerian type of the gamma matrices of functional equations. This enables us to identify the variable change in functional equations as an action of an element in the Weyl group of a general linear group, and to decompose functional equations into a product of more elementary functional equations. There exists a similar results for p-adic local zeta functions. As an application of p-adic theory, we investigated the Fourier coefficients … More of Elsenstein series of Sp(n) and GL(n) and the theory of spherical transforms on certain spherical homogeneous spaces.(2)We identified the Koecher-Maass series of real analytic Siegel Eisenstein series with a zeta function associated with a certain prehomogeneous vector space on which the Siegel parabolic subgroup of SO(n, n) acts. It is quite probable that this result can be extended to other classical groups. A considerable progress has been made in explicit calculation of zeta functions. We obtained an explicit expression of zeta functions in terms of the Riemann zeta function and the Mellin transforms of the Cohen Eisenstein series for more than 70 percent of irreducible regular reduced prehomogeneous vector spaces.(3)For non-regular prehomogeneous vector spaces, we developed a general theory of integral representations and the functional equation of the zeta integrals, which is a formal generalization of the theory for regular prehomogeneous vector spaces. We also gave the first example of explicit functional equations for non-regular spaces. Less

项目成果

期刊论文数量(174)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Ibukiyama: "On "easy" zeta functions"Sugaku Expositions. 14. 191-204 (2001)
T.Ibukiyama:“论“简单”zeta 函数”朱乐阐述。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
F.Sato: "Local densities of representations of quadratic forms over p-adic integers : the non-dyadic case"J.Number Theory. 83. 106-136 (2000)
F.Sato:“p 进整数上二次形式表示的局部密度:非二进情况”J.数论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Yamada: "Segre threefold and $N=3$ reflection equation"Phys.Lett.A. 298. 350-360 (2002)
Y.Yamada:“Segre 三重和 $N=3$ 反射方程”Phys.Lett.A。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akihiko Gyoja: "Characteristic cycles of certain characger sheaves"Indagationes Mathematicae. 12. 329-335 (2001)
Akihiko Gyoja:“某些字符轮的特征周期”Indagationes Mathematicae。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yumiko Hironaka: "A remark on Kitaoka's power series attached to local densities"Comment. Math. Univ. St. Pauli. 50. 141-146 (2001)
Yumiko Hironaka:“关于北冈幂级数与局部密度相关的评论”评论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SATO Fumihiro其他文献

SATO Fumihiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SATO Fumihiro', 18)}}的其他基金

Zeta functions associated with automorphic distributions and an analytic number theory of quartic forms
与自守分布相关的 Zeta 函数和四次形式的解析数论
  • 批准号:
    24540029
  • 财政年份:
    2012
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of automated home treatment system that allows continued hyperthermia cancer radical treatment
开发自动化家庭治疗系统,可持续进行癌症根治性热疗
  • 批准号:
    22300174
  • 财政年份:
    2010
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The construction of breast cancer automatic care system using micro-implanted element
微植入元件乳腺癌自动护理系统的构建
  • 批准号:
    20680028
  • 财政年份:
    2008
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Researches on zeta functions of prehomogeneous vector spaces
预齐次向量空间zeta函数研究
  • 批准号:
    20540028
  • 财政年份:
    2008
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relation between automorphic forms and zeta functions associated with prehomogeneous vector spaces
自同构形式和与预齐次向量空间相关的 zeta 函数之间的关系
  • 批准号:
    16340012
  • 财政年份:
    2004
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Study on the spherical function of discrete series representations from the point of view of the theory of automorphic forms
从自守型理论角度研究离散级数表示的球函数
  • 批准号:
    20540005
  • 财政年份:
    2008
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了