Study on phase transition for interacting particle systems
相互作用粒子系统的相变研究
基本信息
- 批准号:12440024
- 负责人:
- 金额:$ 9.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We study phase transitions of interacting particle systems, in particular, contact process type model, the Domany-Kinzel model by using various correlation inequalities and correlation identities. Recently we obtain the BFKL inequality which is a refinement of a special case of the well-known Harris-FKG inequality. From this inequality, bounds of the survival probability and critical value can be obtained systematically. In general, we can apply the above mentioned method (called correlation inequality method (CIM) to attractive interacting particle systems. However it was not known whether or not the CIM can be applied to even non-attractive models. Some Monte Carlo simulations suggested that some non-attractive models satisfy the Harris-FKG type inequality. In fact, we could prove this fact later. But we do not show that the BFKL inequality can be satisfied for the same model. Furthermore we obtain a necessary and sufficient condition on duality for the Domany-Kinzel model by several methods. One of them is closely related to quantum mechanics. So we move to study quantum walks which have been widely studied in the field of quantum computing. In particular, we study symmetry of distribution, limit theorems, and absorption problems of quantum walks with nearest-neighbor transition in one dimension. Very recently we show a localization of two-dimensional quantum walk including the Grover walk.
我们通过使用各种相关不等式和相关恒等式来研究相互作用粒子系统的相变,特别是接触过程类型模型、Domany-Kinzel 模型。最近我们得到了 BFKL 不等式,它是著名的 Harris-FKG 不等式的特例的改进。从这个不等式中,可以系统地获得生存概率和临界值的界限。一般来说,我们可以将上述方法(称为相关不等式方法(CIM))应用于有吸引力的相互作用粒子系统。但是,不知道CIM是否可以应用于甚至非有吸引力的模型。一些蒙特卡洛模拟表明一些非吸引力模型满足Harris-FKG型不等式。事实上,我们可以稍后证明这一事实。但我们没有证明同一模型可以满足BFKL不等式。 此外,我们通过多种方法获得了Domany-Kinzel模型对偶性的充要条件。其中之一与量子力学密切相关。因此,我们开始研究量子行走,这在量子计算领域已被广泛研究。特别是,我们研究一维中最近邻跃迁的分布对称性、极限定理和量子游走的吸收问题。最近我们展示了本地化 二维量子行走,包括格罗弗行走。
项目成果
期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Konno, R.Schinazi, H.Tanemura: "Coexistence results for a spatial stochastic epidemic model"Markov Processes and Related Fields. (2004)
N.Konno、R.Schinazi、H.Tanemura:“空间随机流行病模型的共存结果”马尔可夫过程和相关领域。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Makoto Katori: "Survival probabilities for discrete-time models in one dimension"Journal of Statistical Physics. 99. 603-612 (2000)
Makoto Katori:“一维离散时间模型的生存概率”统计物理学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Konno: "Absorption problems for quantum walks in one dimension"J.Phys.A : Math.Gen. 36. 241-253 (2003)
N.Konno:“一维量子行走的吸收问题”J.Phys.A :Math.Gen。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Konno, T.Namiki, T.Soshi, A.Sudburg: "Absorption problems for quantum random walks in one dimertion"Journal of Physics A : Mathematical and General. 36巻. 241-253 (2003)
N.Konno、T.Namiki、T.Soshi、A.Sudburg:“一维量子随机游走的吸收问题”《物理学杂志 A》:数学与综合。 36. 241-253 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Norio Konno, Takao Namiki, Takahiro Soshi, Aidan Sadbury: "Absorption problems for quantum walks in one dimension"Journal of Physics A : Mathematical and General. Vol.36. 241-253 (2003)
Norio Konno、Takao Namiki、Takahiro Soshi、Aidan Sadbury:“一维量子行走的吸收问题”物理学杂志 A:数学与一般。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KONNO Norio其他文献
KONNO Norio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KONNO Norio', 18)}}的其他基金
Towards the construction of a unified theory of stochastic and quantum models on complex networks
构建复杂网络上随机和量子模型的统一理论
- 批准号:
15K13443 - 财政年份:2015
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on classical and quantum models on graphs
图上的经典模型和量子模型研究
- 批准号:
24540116 - 财政年份:2012
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on stochastic and quantum models on complex networks
复杂网络的随机和量子模型研究
- 批准号:
21540118 - 财政年份:2009
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on transit layers of the Boltzmann equation
玻尔兹曼方程传输层的研究
- 批准号:
16540185 - 财政年份:2004
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on Interacting Particle Systems Based on a New Type of Correlation Inequalities
基于新型相关不等式的相互作用粒子系统分析
- 批准号:
09640250 - 财政年份:1997
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
The Symbiotic Contact Process on Non-Lattice Structures
非晶格结构的共生接触过程
- 批准号:
2441582 - 财政年份:2020
- 资助金额:
$ 9.79万 - 项目类别:
Studentship
Fabrication of one-dimensionally aligned reactive sites with non-contact process
通过非接触工艺制造一维排列的反应位点
- 批准号:
23655186 - 财政年份:2011
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A Developmental Research on Upgrading and Practical Application of Anaerobic Contact Process by Using Two-Phase Anaerobic Process
两相厌氧工艺厌氧接触工艺升级改造及实际应用的进展研究
- 批准号:
01850127 - 财政年份:1989
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B).














{{item.name}}会员




