Development of the Microplasticity Theory of Internal Friction and its Application to the Evaluation of Thin-Film Mechanical Properties

内摩擦微塑性理论的发展及其在薄膜力学性能评价中的应用

基本信息

  • 批准号:
    12450258
  • 负责人:
  • 金额:
    $ 4.16万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

Internal friction in aluminum, copper and gold thin films on silicon substrates has been measured as a function of strain amplitude at various temperatures by means of a free-decay method of flexural vibration. According to the constitutive equation, the internal friction in the film can be evaluated separately from the measured damping of the composite system. The amplitude dependence for the aluminum and copper films is found in the strain range one or two orders of magnitude higher than that for the bulk. On the basis of the microplasticity theory, the amplitude-dependent internal friction can be converted into the plastic strain as a function of effective stress on dislocation motion. The stress-strain responses thus obtained for the aluminum and copper films show that the plastic strain of the order of 10^<-9> increases nonlinearly with increasing stress. The curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both of which means a suppression of the microplastic deformation. The microflow stress at a constant level of the plastic strain varies inversely with the film thickness at all temperatures examined. The film thickness effect for the aluminum and copper films can be explained on the basis of a dislocation-bowing model. In contrast, the microflow stress for the gold films decreases with decreasing film thickness when the film thickness is less than 0.5 μm, which could be due to the stress relaxation caused by surface-grain boundary diffusion. It is found that, for the gold films covered by titanium films, the microflow stress varies inversely with the film thickness although the stress level is lower than that for the aluminum films.
用弯曲振动自由衰减法测量了硅基上铝、铜和金薄膜在不同温度下的内耗随应变振幅的变化。根据本构方程,膜中的内摩擦力可以从复合材料系统的测量阻尼单独评估。铝和铜薄膜的振幅依赖性被发现在应变范围内的一个或两个数量级高于散装。根据细观塑性理论,将与振幅有关的内耗转化为位错运动时有效应力的函数,即塑性应变。由此获得的铝和铜膜的应力-应变响应表明,10^量级的塑性应变<-9>随应力的增加而非线性地增加。随着薄膜厚度的减小和温度的降低,曲线倾向于向更高的应力移动,这两者都意味着微塑性变形的抑制。在恒定的塑性应变水平下的微流应力在所有温度下与膜厚度成反比。铝膜和铜膜的膜厚效应可以用位错弯曲模型来解释。当膜厚小于0.5 μm时,金膜的微流应力随着膜厚的减小而减小,这可能是由于表面-晶界扩散引起的应力松弛所致。结果表明,对于钛膜覆盖的金膜,虽然应力水平低于铝膜,但其微流应力与膜厚成反比。

项目成果

期刊论文数量(74)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHINO Yoichi其他文献

NISHINO Yoichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHINO Yoichi', 18)}}的其他基金

Improvement of thermoelectric performance by high-pressure torsion of off-stoichiometric Heusler compounds and elucidation of their mechanism
通过非化学计量赫斯勒化合物的高压扭转改善热电性能及其机理的阐明
  • 批准号:
    17K06771
  • 财政年份:
    2017
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancement of thermoelectric properties of off-stoichiometric Heusler compounds and elucidation of its mechanism
非化学计量赫斯勒化合物热电性能的增强及其机制的阐明
  • 批准号:
    26420664
  • 财政年份:
    2014
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Off-stoichiometry effect on the thermoelectric properties of the pseudogap Heusler compounds
非化学计量对赝能隙赫斯勒化合物热电性能的影响
  • 批准号:
    23360279
  • 财政年份:
    2011
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Pseudogap Formation and Thermoelectric Properties of Heusler-type Compounds
Heusler 型化合物的赝能隙形成和热电性能
  • 批准号:
    17360311
  • 财政年份:
    2005
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Phase stability and high-temperature strength of Fe aluminides with addition of 3d transition metals
添加 3d 过渡金属的铁铝化物的相稳定性和高温强度
  • 批准号:
    09650759
  • 财政年份:
    1997
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Absolute Evaluation of Mechanical Properties of Thin Films Based on the Microplasticity Theory of Internal Friciton.
基于内摩擦微塑性理论的薄膜力学性能的绝对评价。
  • 批准号:
    05650617
  • 财政年份:
    1993
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Quantifying the Scatter: Statistical Analysis and Stochastic Modelling of Microplasticity
量化分散:微塑性的统计分析和随机建模
  • 批准号:
    EP/J003387/1
  • 财政年份:
    2012
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Research Grant
Microplasticity Near Reinforcements
增强体附近的微塑性
  • 批准号:
    9527751
  • 财政年份:
    1996
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Standard Grant
Absolute Evaluation of Mechanical Properties of Thin Films Based on the Microplasticity Theory of Internal Friciton.
基于内摩擦微塑性理论的薄膜力学性能的绝对评价。
  • 批准号:
    05650617
  • 财政年份:
    1993
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Fundamental Characterization of Surface Microplasticity (Materials Research)
表面微塑性的基本表征(材料研究)
  • 批准号:
    8310652
  • 财政年份:
    1983
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Continuing Grant
RESEARCH INITIATION - MICROPLASTICITY OF ALUMINUM
研究启动——铝的微塑性
  • 批准号:
    7140485
  • 财政年份:
    1971
  • 资助金额:
    $ 4.16万
  • 项目类别:
Research Initiation--Supramolecular Structure and Microplasticity of Polytetrafluoroethylene
研究启动--聚四氟乙烯的超分子结构与微塑性
  • 批准号:
    7035688
  • 财政年份:
    1970
  • 资助金额:
    $ 4.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了