Unconventional Magnetism of Nanographite and Molecular Devices

纳米石墨和分子器件的非常规磁性

基本信息

  • 批准号:
    13440208
  • 负责人:
  • 金额:
    $ 9.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

Nano-sized graphene (mono-layer graphite) is an interesting molecule-based nanoscopic magnetic system, in which a variety of unique magnetic features appear in relation to its secific electronic structure. We investigated magnetic properties of nano-graphene and networked nano-graphites using activated carbon fibers (ACF) and nano-graphite prepared by heat-treatment of nano-diamond particles. The nano-graphite obtained from nano-diamond particle forms a polyhedron with a hollow inside, where each facet comprises a stacking of 3-6 nano-graphene sheets with the mean size of 7nm. ACFs are featured with a 3D network of nano-grsphite domains, where each domain is formed with a stacking of 3-4 graphene sheets with the mean size of 2-3nm. The electronic features of ACFs are characterized as Anderson insulator in the Coulomb gap variable hopping regime. In the 3D nano-graphite network in ACFs, where each nano-graphite domain has ca.1 spin, the magnetic properties governed by the edge-state spi … More ns obey the Curie-Weiss law with a small negative Weiss temperature of -2-4K. The physisorption of guest species such as water or ethanol into the nano-space (micropore) surrounding nano-graphite domains brings about a discontinuous drop in the magnetic moment of the edge spin at a threshold amount of guest species. Judging from the fact that guests accommodated in micropores squeeze nano-graphites, which makes the inter-graphene layer distance shrunk, this can be explained with the internal-pressure-induced enhancement of the exchange interaction between nano-graphenes. Heat-treatment induces an insulator-metal transition around 1300℃, above which the magnetism can be described in terms of Pauli paramagnetism. Here, the development of an infinite percolation path network is responsible for the metallic state. In the vicinity of the insulator-metal transition, a novel disordered magnetism similar to spin-glass state appears below ca.7K due to the randomness in the strengths of exchange interactions between non-bonding π edge-state spins, which are mediated by the conduction π-electrons. The experimental findings presented above reveal novel nanoscopic magnetism of nano-graphite-based molecular magnets. We could also successfully prepare a single nano-graphene sheet on a graphite substrate by heat-treatment of a nanodiamond particle after electrophoretic treatment. A nano-graphite with its layer tilted with respect to the substrate show an electron diffraction pattern with the periodicity varying along the tilting direction. Less
纳米石墨烯(单层石墨)是一种有趣的基于分子的纳米级磁性系统,其中出现了与其特定电子结构相关的各种独特的磁性特征。我们使用活性碳纤维(ACF)和纳米金刚石颗粒热处理制备的纳米石墨,研究了纳米石墨烯和网络纳米石墨的磁性能。由纳米金刚石颗粒得到的纳米石墨形成内部中空的多面体,每个面由3-6片平均尺寸为7nm的纳米石墨烯片堆叠而成。 ACF 具有纳米石墨烯域的 3D 网络,其中每个域由 3-4 个平均尺寸为 2-3 nm 的石墨烯片堆叠而成。 ACF 的电子特征被描述为库仑间隙可变跳跃区域中的安德森绝缘体。在 ACF 的 3D 纳米石墨网络中,每个纳米石墨域具有约 1 个自旋,由边缘态 spi 控制的磁特性遵循居里-韦斯定律,负韦斯温度为 -2-4K。客体物质(例如水或乙醇)物理吸附到纳米石墨域周围的纳米空间(微孔)中,导致客体物质阈值量下边缘自旋磁矩的不连续下降。从微孔中容纳的客体挤压纳米石墨,使石墨烯层间距离缩小来看,这可以用内压引起的纳米石墨烯之间交换相互作用的增强来解释。热处理在1300℃左右引起绝缘体-金属转变,高于此温度可以用泡利顺磁性来描述磁性。在这里,无限渗透路径网络的发展是金属态的原因。在绝缘体-金属转变附近,由于非键合 π 边缘态自旋之间的交换相互作用强度的随机性(由传导 π 电子介导),在约 7K 以下出现了一种类似于自旋玻璃态的新型无序磁性。上述实验结果揭示了纳米石墨基分子磁体的新颖纳米磁性。我们还可以通过电泳处理后对纳米金刚石颗粒进行热处理,在石墨基板上成功制备单层纳米石墨烯片。其层相对于基底倾斜的纳米石墨显示出周期性沿倾斜方向变化的电子衍射图案。较少的

项目成果

期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. Harigaya: "Novel Electronic Wave Interference Pattern in Nanographene Sheets"J. Phys. : Condensed Matters 14. L605-611 (2002)
K. Harigaya:“纳米石墨烯片中的新型电子波干涉图案”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Takai: "Structure and Electronic Properties of Diamond-Like Carbon and its Heat-treatment Effect"Materials Research Society Proceedings "Electrically Based Microstructural Characterization III". 343-352 (2002)
K. Takai:“类金刚石碳的结构和电子特性及其热处理效果”材料研究学会论文集“基于电的微观结构表征 III”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toshiaki Enoki, Naoki Kawatsu, Yoshiuaki Shibayama, Hirohiko Sato, 他: "Magnetism of Nano-Graphite and Its Assembly"Polyhedrons. 20. 1311-1315 (2001)
Toshiaki Enoki、Naoki Kawatsu、Yoshiuaki Shibayama、Hirohiko Sato 等人:“纳米石墨及其组装的磁性” 20. 1311-1315 (2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Harigaya: "Novel Electronic Wave Interference Pattern in Nanographene Sheets"J.Phys. : Condensed Matters. 14. L605-L611 (2002)
K.Harigaya:“纳米石墨烯片中的新型电子波干涉模式”J.Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Enoki: "Structural and Electronic Properties of sp^2/sp^3 Mixed Nano-Carbon Systems"Mol.Cryst.Liq.Cryst.. 386. 145-149 (2002)
T.Enoki:“sp^2/sp^3 混合纳米碳系统的结构和电子性质”Mol.Cryst.Liq.Cryst.. 386. 145-149 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ENOKI Toshiaki其他文献

ENOKI Toshiaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ENOKI Toshiaki', 18)}}的其他基金

Physical chemistry of nanographene edges:edge states and their electronic and magnetic functions
纳米石墨烯边缘的物理化学:边缘态及其电子和磁功能
  • 批准号:
    20001006
  • 财政年份:
    2008
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
Unconventional Electronic and Magnetic Properties of Carbon-Based Nano-π-electron System
碳基纳米π电子体系的非常规电子和磁性
  • 批准号:
    15105005
  • 财政年份:
    2003
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Development of Urtla-High Vacuum, Low Temperature, High Magnetic Field Scanning Tunneling Microscope.
Urtla-高真空、低温、高磁场扫描隧道显微镜的研制。
  • 批准号:
    10354011
  • 财政年份:
    1998
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Development of Novel Guest Phases Confined in Carbon Based Micropore Space and Their Properties
碳基微孔空间新型客体相的开发及其性能
  • 批准号:
    08404048
  • 财政年份:
    1996
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Novel two-dimensional metallic hydrogen in alkali-metal-hydrogen-graphite intercalation compounds.
碱金属氢石墨插层化合物中的新型二维金属氢。
  • 批准号:
    02453009
  • 财政年份:
    1990
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Hydrogen Absorption in Graphite-Alkali-Metal Intercalation Compounds
石墨-碱金属插层化合物中的氢吸收
  • 批准号:
    61540250
  • 财政年份:
    1986
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Formation of edge state and optical Tamm state inside crystalline specimen using spatial phase modulation of X-ray beam
利用 X 射线束的空间相位调制在晶体样品内部形成边缘态和光学 Tamm 态
  • 批准号:
    20K03824
  • 财政年份:
    2020
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Electron excitation in the quantum Hall chiral edge state by optical vortex irradiation
通过光学涡旋照射在量子霍尔手性边缘态中激发电子
  • 批准号:
    18K03481
  • 财政年份:
    2018
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Toporogical state and its edge state in bosonic and quantum spin systems
玻色子和量子自旋系统中的拓扑态及其边缘态
  • 批准号:
    16K17751
  • 财政年份:
    2016
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Experimental Studies of the Edge-State Sheath on Quantum Hall Multilayers
量子霍尔多层膜边缘态鞘层的实验研究
  • 批准号:
    0071956
  • 财政年份:
    2000
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Continuing grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了