Development of a feedback neural network model of expert's decision-making process

专家决策过程反馈神经网络模型的开发

基本信息

  • 批准号:
    15300270
  • 负责人:
  • 金额:
    $ 3.01万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

Research results of 2003 year(1)Examined existing models, i.e.corporative model, parallel constraints satisfaction model, and risk taking model, sufficiently.(2)Based on the examination in (1), studied a foundational feed forward neural network model constructed in the computer through its simulation.(3)Studied a feed back neural network model based on the system constructed in (2).(4)Extended the model constructed in (3), based on the variation of feed back structures.(5)Executed psychological experiments of decision-making process including psychological feed back process supposed in the present neural network model.(6)Executed the computer simulation of the model constructed in (4), using the same materials and method as psychological experiments in (5). Then, compared the results of the simulations and the results of experiments.(7)Improved the model in order to simulate the more human-like decision-making process, based on the comparison in (6).Research results of 2004 year(1)Developed a new model based on the system constructed in 2003, in order to simulate the decision making process of experts.(2)Executed psychological experiments of experts' decision making process including psychological feed back process.(3)Executed the computer simulation of the model constructed in (1), using the same materials and method as psychological experiments in (2). Then, compared the results of the simulations and the results of experiments.Based on the comparison in (3), improved the model in order to simulate the more expert-like decision-making process. Then, examined the possibility of application of the model in the educational technology.
2003年的研究成果(1)对现有的合作模型、平行约束满足模型和风险承担模型进行了充分的研究。(2)在(1)研究的基础上,通过仿真研究了在计算机上构造的前馈神经网络基本模型。(3)研究了基于(2)所构造系统的反馈神经网络模型。(4)基于反馈结构的变化,对(3)中建立的模型进行了扩展。(5)进行了决策过程的心理学实验,包括本神经网络模型中假设的心理反馈过程。(6)采用与(5)中心理学实验相同的材料和方法,对(4)中构建的模型进行计算机模拟。然后,将仿真结果与实验结果进行了比较。(7)在(6)比较的基础上,对模型进行改进,使其更接近于人类的决策过程。2004年研究成果(1)在2003年构建的系统基础上,开发了一个新的模型,以模拟专家的决策过程。(2)专家决策过程的心理实验,包括心理反馈过程。(3)采用与(2)中心理学实验相同的材料和方法,对(1)中构建的模型进行计算机模拟。然后,将仿真结果与实验结果进行比较,并在(3)比较的基础上,对模型进行改进,使其更能模拟专家的决策过程。然后,探讨了该模型在教育技术中应用的可能性。

项目成果

期刊论文数量(68)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
相原永, 中川正宣, 山岸侯彦: "多属性意思決定過程のニューラルネットワークによるモデル化"日本認知科学会第20回大会発表論文集. 64-65 (2003)
Nagai Aihara、Masanobu Nakakawa、Maruhiko Yamagishi:“使用神经网络对多属性决策过程进行建模”日本认知科学学会第 20 届年会记录 64-65 (2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
An experimental study on generation process of constraints in insightful problem solving-using T and Arrow puzzles-
洞察问题解决中约束生成过程的实验研究——使用T字谜和箭头谜题——
Masayuki Kuwata, Makoto Hayasaka, Masanori Nakagawa: "Language Selection and Social Structure Transition in Ukraine from 1959 to 1989"New developments in psychometrics, Springer-varlag. 157-164 (2003)
Masayuki Kuwata、Makoto Hayasaka、Masanori Nakakawa:“1959 年至 1989 年乌克兰的语言选择和社会结构转型”心理测量学的新发展,Springer-varlag。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A neural networks model representing the subjective probability of combined conditional
代表组合条件主观概率的神经网络模型
結合条件文に対する主観的確率判断過程のニューラルネットワークモデル-意味的相互作用に関連する要因の検討-
连接条件句主观概率判断过程的神经网络模型 - 语义交互相关因素考察 -
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAGAWA Masanori其他文献

NAKAGAWA Masanori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAGAWA Masanori', 18)}}的其他基金

Research for investigating Alexander disease using astrocytes differentiated from iPS cells
使用 iPS 细胞分化的星形胶质细胞调查亚历山大病的研究
  • 批准号:
    24659433
  • 财政年份:
    2012
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The overseas scientific research for the elucidation of the mechanism of a novel familial motor neuron disease with sensory neuropathy originated in Japan
起源于日本的新型家族性运动神经元疾病伴感觉神经病发病机制的海外科学研究
  • 批准号:
    24406030
  • 财政年份:
    2012
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The overseas scientific research for the elucidation of the mechanism of a novel hereditary motor sensory neuropathy originated in Japan
起源于日本的新型遗传性运动感觉神经病发病机制的海外科学研究
  • 批准号:
    21406026
  • 财政年份:
    2009
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An experimental and theoretical study on psychological mechanism of metaphor understanding and metaphor generation
隐喻理解与隐喻生成心理机制的实验与理论研究
  • 批准号:
    19330156
  • 财政年份:
    2007
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular analysis of a new type of spinocerebellar degeneration with GFAP mutations
具有 GFAP 突变的新型脊髓小脑变性的分子分析
  • 批准号:
    15590902
  • 财政年份:
    2003
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Construction of The Chaotic Neural Networks System of Insightful Problem Solving
洞察问题解决的混沌神经网络系统的构建
  • 批准号:
    13480043
  • 财政年份:
    2001
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular analysis of a new type of hereditary motor sensory neuropathy with proximal dominant involvement
近端显性受累的新型遗传性运动感觉神经病的分子分析
  • 批准号:
    13670661
  • 财政年份:
    2001
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal study in an island community for aging effects on neurological findings and genetic factors on vascular dementia
在岛屿社区中进行的纵向研究,了解衰老对神经系统检查结果的影响以及血管性痴呆的遗传因素
  • 批准号:
    10670596
  • 财政年份:
    1999
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Experimental Study of Logical Learning System using Computer
计算机逻辑学习系统的实验研究
  • 批准号:
    10480034
  • 财政年份:
    1998
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular biology of neurological diseases with abnormality of central or peripheral nerve myelin
中枢或周围神经髓磷脂异常的神经系统疾病的分子生物学
  • 批准号:
    07670720
  • 财政年份:
    1995
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
  • 批准号:
    2332060
  • 财政年份:
    2024
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Continuing Grant
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
  • 批准号:
    23K11120
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
  • 批准号:
    23K10454
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
  • 批准号:
    23H03451
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了