Large-scale Multiscale Analysis for Microscopic Buckling and Macroscopic Instability of Periodic Cellular Solids Based on a Homogenization Theory

基于均质化理论的周期性多孔固体微观屈曲和宏观不稳定性的大规模多尺度分析

基本信息

  • 批准号:
    15360051
  • 负责人:
  • 金额:
    $ 6.46万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

In this study, first, a general framework was developed to analyze microscopic bifurcation and post-bifurcation behavior of periodic cellular solids. The framework was built on the basis of a two-scale theory, called a homogenization theory, of the updated Lagrangian type. The eigenmode problem of microscopic bifurcation and the orthogonality to be satisfied by the eigenmodes were thus derived. It was shown that the orthogonality allows the macroscopic increments to be independent of the eigenmodes, resulting in a simple procedure of the elastoplastic post-bifurcation analysis based on the notion of comparison solids.Second, by use of the framework mentioned above, bifurcation and post-bifurcation analysis were performed for cell aggregates of an elastoplastic hexagonal honeycomb subject to in-plane compression. Thus, demonstrating a basic, long-wave eigenmode of microscopic bifurcation under uniaxial compression, it was shown that the eigenmode has the longitudinal component dominant … More to the transverse component and consequently causes microscopic buckling to localize in a cell row perpendicular to the loading axis. It was further shown that under equi-biaxial compression, the flower-like buckling mode having occurred in a macroscopically stable state changes into an asymmetric, long-wave mode due to the sextuple bifurcation in a macroscopically unstable state, leading to the localization of microscopic buckling in deltaic areas.Third, long-wave and short-wave buckling of elastic square honeycombs subject to in-plane biaxial compression were analyzed using the two-scale theory. By taking cell aggregates to be periodic units, the bifurcation and post-bifurcation behavior were analyzed to discuss the dependence of buckling stress on periodic length. It was shown that buckling stress decreases as periodic length increases, and that very-long-wave buckling occurs just after the onset of macroscopic instability if the periodic length is sufficiently long. Then, a simple formula to evaluate the very-long-wave buckling stress under in-plane biaxial compression was derived by exploring the macroscopic instability condition in the light of the two-scale analysis. The resulting formula was verified using an energy method. Less
在本研究中,首先建立了一个分析周期性胞状固体微观分叉和分叉后行为的一般框架。该框架是建立在一个双尺度理论的基础上,称为均匀化理论,更新拉格朗日类型。由此导出了微观分岔的本征模问题和本征模所应满足的正交性。结果表明,正交性使得宏观增量与本征模无关,从而简化了基于比较体概念的弹塑性后分叉分析过程。其次,利用上述框架,对面内压缩弹塑性六边形蜂窝结构的胞元集合体进行了分叉和后分叉分析。由此,证明了单轴压缩下微观分叉的一个基本长波本征模,并表明本征模具有纵向分量的优势 ...更多信息 并因此导致微观屈曲定位在垂直于加载轴的单元行中。进一步表明,在等双轴压缩下,宏观稳定状态下的花状屈曲模式由于宏观失稳状态下的六重分叉而转变为非对称的长波模式,导致微观屈曲在三角洲区域的局部化。采用双尺度理论分析了平面内双向压缩下弹性方蜂窝结构的长波和短波屈曲。将细胞团视为周期单元,分析了细胞团的分叉和分叉后行为,讨论了屈曲应力与周期长度的关系。结果表明,屈曲应力随周期长度的增加而减小,如果周期长度足够长,则在宏观失稳发生后不久就会发生超长波屈曲。在此基础上,通过对宏观失稳条件的探讨,推导出了一个简单的计算平面内双向压缩条件下超长波屈曲应力的公式。用能量法对所得公式进行了验证。少

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long-wave in-plane buckling of elastic square honeycombs
弹性方形蜂窝体的长波面内屈曲
Elastoplastic microscopic bifurcation and post-bifurcation behavior of periodic cellular solids
D.Okumura: "Elastoplastic microscopic bifurcation and post-bifurcation behavior of periodic cellular solids"Journal of the Mechanics and Physics of Solids. 53・3. 641-666 (2004)
D. Okumura:“周期性细胞固体的弹塑性微观分叉和分叉后行为”《固体力学与物理学杂志》53・3(2004)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Microscopic bifurcation and macroscopic localization in periodic cellular solids : elastoplastic analysis based on a homogenization theory
周期性细胞固体中的微观分岔和宏观局域化:基于均质化理论的弹塑性分析
奥村 大: "均質化理論による周期セル状固体の微視的分岐と巨視的不安定の弾塑性解析"日本機械学会論文集(A編). 69・686. 1421-1428 (2003)
Dai Okumura:“基于均质化理论的周期性细胞固体的微观分岔和宏观不稳定性的弹塑性分析”日本机械工程学会会刊(A版)1421-1428(2003年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHNO Nobutada其他文献

OHNO Nobutada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHNO Nobutada', 18)}}的其他基金

Homogenized inelastic constitutive equation of open-porous bodies: theoretical developments and applications
开孔体均匀非弹性本构方程:理论发展与应用
  • 批准号:
    24360045
  • 财政年份:
    2012
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analytical prediction and homogenization analysis of grain fining effects using a strain gradient plasticity theory
使用应变梯度塑性理论对晶粒细化效果进行分析预测和均匀化分析
  • 批准号:
    19360048
  • 财政年份:
    2007
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Microscopic Buckling Analysis of Cellular Solids Based on a Homogenization Theory of Finite Deformation
基于有限变形均匀化理论的多孔固体微观屈曲分析
  • 批准号:
    13650084
  • 财政年份:
    2001
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Laser-Raman Measurement and Analytical Evaluation of Matrix Creep Induced Stress Relaxation in Broken Fibers
断裂纤维中基体蠕变引起的应力松弛的激光拉曼测量和分析评估
  • 批准号:
    11650086
  • 财政年份:
    1999
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homogenization Analysis and Experimental Verification for Creep of Unidirectional Fiber Reinforced Composites
单向纤维增强复合材料蠕变均匀化分析及实验验证
  • 批准号:
    09450046
  • 财政年份:
    1997
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Revealing the Cell Wall Organization of Fungal Pathogens and Structural Responses to Antifungal Drugs Using Cellular Solid-State NMR
使用细胞固态核磁共振揭示真菌病原体的细胞壁组织和抗真菌药物的结构反应
  • 批准号:
    10566511
  • 财政年份:
    2023
  • 资助金额:
    $ 6.46万
  • 项目类别:
Collaborative Research: Adaptive Building Enclosure Systems Using Cellular Solid-Solid Phase Change Materials with Variable Transparency
合作研究:使用具有可变透明度的细胞固-固相变材料的自适应建筑围护系统
  • 批准号:
    1662675
  • 财政年份:
    2017
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Building Enclosure Systems Using Cellular Solid-Solid Phase Change Materials with Variable Transparency
合作研究:使用具有可变透明度的细胞固-固相变材料的自适应建筑围护系统
  • 批准号:
    1662903
  • 财政年份:
    2017
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了