Functional Biopolymer Binders for High-Energy-Density and Ultrafast Cycling Lithium-Ion Batteries Operating at Extreme Temperatures (BLISET)
用于在极端温度下运行的高能量密度和超快循环锂离子电池的功能性生物聚合物粘合剂 (BLISET)
基本信息
- 批准号:462115051
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2021
- 资助国家:德国
- 起止时间:2020-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lithium-ion (Li-ion) batteries were first commercialized in 1991 and were an immediate success. Almost thirty years later, that success has not faded and the demand for rechargeable batteries with high-energy-density and long cycle life has only increased. In addition to high-energy-density and long cycle life, safety, sustainability, cost-efficiency, high rate capability and wide temperature range operation are also required. The urge is strong and global. Batteries are expected to deliver great performance worldwide no matter if they are used in summery Brazil or wintry Siberia.In order to attain such goals, previous approaches included the optimization of the active material. However, that path is reaching its limit and, thus, attention has been turned to other components of batteries. One of the key component of batteries is the binder, which is responsible for homogenously dispersing and connecting the particles (active material and conductive carbon) that compose electrodes, to ensure a strong and long-lasting adhesion to the current collector, and to contribute to a faster diffusion of lithium ions. In this project, the aim is to develop a more environmentally friendly electrode manufacturing process, improve the rate capability and extend the operating temperature range of Li-ion batteries by improving the binder’s mechanical, thermal and conductive properties. To reach these goals a new type of binder based on biopolymers will be investigated. Besides the biopolymer, this new binder, a gel binder, also comprises an ionic liquid and a lithium salt. The combination of these three components leads to an improvement of the ionic conductivity, mechanical integrity and thermal stability and helps to create a conductive network. Thus, the active materials are fully utilized as a result of fast charge transfer kinetics and shorter lithium ion diffusion paths.Overall, Li-ion batteries with high-energy-density, long cycle life (2000-3000 cycles) and very high rate-capability (at least up to 10C for 1000 cycles, corresponding to a full battery charge in 6 minutes) in a wide range of temperatures (between -30 and 60 ºC) are intended. The optimization of the binder composition and the use of well-known active materials will grant this objective. The structural, morphological, mechanical and thermal properties of the samples prepared throughout this project will be evaluated by means of Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), tensile testing, electrolyte uptake measurements and thermogravimetric analysis (TGA), while the electrochemical characterization will be carried out through in situ spectroelectrochemistry, galvanostatic cycling (GCPL), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry not only at room temperature (25 ºC), but also at very low (-30 ºC) and high temperatures (60 ºC).
锂离子电池于1991年首次商业化,并立即获得成功。近30年后,这种成功并未褪色,对高能量密度和长循环寿命的充电电池的需求只会增加。除了高能量密度和长循环寿命外,还要求安全、可持续性、成本效益、高倍率能力和宽温度范围运行。这种冲动是强烈的,而且是全球性的。无论是在夏季的巴西还是寒冷的西伯利亚,电池都有望在全球范围内提供出色的性能。为了实现这一目标,以前的方法包括优化活性材料。然而,这条道路正在接近极限,因此,人们的注意力转向了电池的其他组件。电池的关键组件之一是粘结剂,它负责均匀分散和连接组成电极的颗粒(活性材料和导电碳),以确保与集电器的牢固和持久的粘附性,并有助于锂离子更快地扩散。在本项目中,旨在通过改善粘结剂的机械、热学和导电性能,开发更环保的电极制造工艺,提高锂离子电池的倍率能力,扩大电池的工作温度范围。为了实现这些目标,将研究一种基于生物聚合物的新型粘结剂。除了生物聚合物,这种新的粘结剂,凝胶粘结剂,还包括离子液体和锂盐。这三个组分的结合导致了离子导电性、机械完整性和热稳定性的改善,并有助于形成导电网络。因此,由于快速的电荷转移动力学和更短的锂离子扩散路径,活性材料被充分利用。总体而言,人们希望在广泛的温度范围(-30到60°C)下具有高能量密度、长循环寿命(2000-3000次循环)和非常高的倍率能力(1000次循环至少高达10C,相当于电池在6分钟内充满电)的锂离子电池。粘结剂成分的优化和众所周知的活性材料的使用将实现这一目标。通过傅立叶变换红外光谱(FTIR)、X射线衍射仪(X射线衍射仪)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、拉伸测试、电解液吸收测量和热重分析(TGA)对整个项目所制备的样品的结构、形态、机械和热性能进行评估,而电化学表征将通过现场光谱电化学、恒电流循环(GCPL)、电化学阻抗谱(EIS)和循环伏安法进行,不仅在室温(25℃),而且在非常低(-30℃)和高温(60℃)下也将进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Daria Mikhailova, since 10/2021其他文献
Dr. Daria Mikhailova, since 10/2021的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Fungi-Biopolymer synergistic application in soil stabilisation
真菌-生物聚合物在土壤稳定中的协同应用
- 批准号:
EP/Y002202/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Development of a sustainable biopolymer for extrusion and injection moulding manufacturing
开发用于挤出和注塑制造的可持续生物聚合物
- 批准号:
10092365 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
RUI: BIOPOLYMER - BIObricks POLYketide Metabolic EngineeRing platform for unraveling the biosynthesis of higher anthracyclines
RUI:BIOPOLYMER - BIObricks 聚酮化合物代谢工程平台,用于揭示高级蒽环类药物的生物合成
- 批准号:
2321976 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
FMSG: Bio: RAMP-Bio-CAFe: Routing Advanced Manufacturing of BioPolymer(s): Capturing Agri-feedstocks in Cell free Factories
FMSG:生物:RAMP-Bio-CAFe:生物聚合物的先进制造路线:在无细胞工厂中捕获农业原料
- 批准号:
2328291 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Stabilising soil foundation with biopolymer for enhanced rail transport
用生物聚合物稳定地基以增强铁路运输
- 批准号:
DE230101127 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
I-Corps: AI for predicting polymer properties for biopolymer films
I-Corps:用于预测生物聚合物薄膜聚合物特性的人工智能
- 批准号:
2335930 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Unlocking the potential of biopolymer soil stabilisation
释放生物聚合物土壤稳定的潜力
- 批准号:
EP/X016943/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Breaking FROntiers for advanced engineering of bespoke, functional Biopolymer COmposite materials (FROBCO)
突破 FROntiers,实现定制功能性生物聚合物复合材料 (FROBCO) 的先进工程
- 批准号:
EP/V002236/3 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Scanning Probe Microscopy of Polymer, Biopolymer and Semicrystalline Surface Nanostructures
聚合物、生物聚合物和半晶表面纳米结构的扫描探针显微镜
- 批准号:
RGPIN-2022-04790 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Elucidating the Nanoscale Interaction between Invertible Micellar Assemblies (IMAs) and Biopolymer Cargos under Varied Environments
合作研究:阐明不同环境下可逆胶束组件(IMA)和生物聚合物货物之间的纳米级相互作用
- 批准号:
2217474 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant