Study on arithmetic properties of modular function fields and elliptic curves by constructive methods.

用构造方法研究模函数域和椭圆曲线的算术性质。

基本信息

  • 批准号:
    15540042
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

In this research project, we studied following three subjects.(1)We studied the group structure of rational points of an elliptic curve E over finite fields in understanding arithmetic properties of solutions of a defining equation of a modular function field. In the case the elliptic curve E is a reduction of an elliptic curve with complex multiplication O, the group structure of rational points of E is determined by the trace α of the Frobenius endomorphism. Since the absolute value of α is easily known, the problem is to determine the sign of α. We showed a method to determine the sign and determined the sign of the trace in the case O is an orders of discriminant divided by 2, 3 or 5 and of class number 2 or 3.(2)Let p=5, 7, 11. We studied the representation of the modular invariant function J as a polynomial of degree p by a generator of a modular function field associated with the subgroup of SL_2(Z) of index p. We applied this representation to construct a family of elliptic curves with cyclic rational points groups over a finite field and to determine the Galois representation on the group of p-division points of elliptic curves.(3)Each solution of the defining equation of a modular function field corresponds to an elliptic curve. To determine this correspondence, we studied the representation of modular invariant function J by generators of the modular function field. Let g be the genus of the modular function field. We have obtained an algorithm to calculate the defining equation and the representation of J from g+1 modular functions fj which are regular except one cuspidal non-Weierstrass point. The essential part in practising the algorithm is to construct g+1 modular functions fj. In the case of Hecke group of level N, we constructed the modular functions fj for every N<53.
在这个研究项目中,我们研究了以下三个主题。(1)研究有限域上椭圆曲线E有理点的群结构,以理解模函数域定义方程解的算术性质。在椭圆曲线E是椭圆曲线复乘O的化简情况下,E的有理点群结构由Frobenius自同态的迹线α决定。因为α的绝对值很容易知道,所以问题是确定α的符号。我们给出了一种确定符号的方法,并确定了当0是一个阶的判别式除以2、3或5,且类数为2或3时,迹的符号。(2)设p= 5,7,11。研究了模不变函数J作为p次多项式的模函数域的生成器与指标p的SL_2(Z)子群相关联的表示。利用这种表示构造了有限域上具有循环有理点群的椭圆曲线族,并确定了椭圆曲线的p分点群上的Galois表示。(3)模函数场定义方程的每一个解对应一条椭圆曲线。为了确定这种对应关系,我们研究了模不变函数J用模函数域的生成器表示。设g为模函数域的格。本文给出了一种由g+1个除一个cusidal非weierstrass点以外的正则模函数fj计算定义方程和表示J的算法。练习算法的关键部分是构造g+1个模函数fj。对于水平N的Hecke群,我们构造了每个N<53的模函数fj。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Representation of modular invariant function by generators of a modular function fields.
通过模函数域的生成器来表示模不变函数。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noburo Ishii;Naoya Nakazawa;Noburo Ishii
  • 通讯作者:
    Noburo Ishii
Representation of modular invariant function by generators of a modular function field
用模函数域的生成元表示模不变函数
A representation of the invariant function as a polynomial of degree 11
将不变函数表示为 11 次多项式
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noburo Ishii;Naoya Nakazawa
  • 通讯作者:
    Naoya Nakazawa
石井 伸郎: "Trace of Frobenius endomorphism of an elliptic curve with complex multiplication"Bulletin of the Australian Mathematical Society. (掲載予定).
Nobuo Ishii:“复数乘法椭圆曲线的 Frobenius 自同态的迹”,澳大利亚数学会通报(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Trace of Frobenius endomorphism of an elliptic curve with complex multiplication
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHII Noburo其他文献

ISHII Noburo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHII Noburo', 18)}}的其他基金

GENERATORS AND DEFINING EQUATIONS OF MODULAR FUNCTION FIELDS
模函数场的生成器和定义方程
  • 批准号:
    12640036
  • 财政年份:
    2000
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of theory of elliptic curves to algebraic topology
椭圆曲线理论在代数拓扑中的应用
  • 批准号:
    02640071
  • 财政年份:
    1990
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Continuing Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
  • 批准号:
    2340564
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Continuing Grant
Iwasawa theory of elliptic curves and the Birch--Swinnerton-Dyer conjecture
岩泽椭圆曲线理论和 Birch--Swinnerton-Dyer 猜想
  • 批准号:
    2302064
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
The Arithmetics of Elliptic Curves
椭圆曲线的算术
  • 批准号:
    572925-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    University Undergraduate Student Research Awards
Variation of the rank in families of elliptic curves
椭圆曲线族中等级的变化
  • 批准号:
    RGPIN-2021-03692
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Modularity of elliptic curves over imaginary quadratic fields
虚二次域上椭圆曲线的模性
  • 批准号:
    565670-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Variation of the rank in families of elliptic curves
椭圆曲线族中等级的变化
  • 批准号:
    RGPIN-2021-03692
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic Curves, p-adic Deformations, and Iwasawa Theory
椭圆曲线、p 进变形和岩泽理论
  • 批准号:
    2101458
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Continuing Grant
Applications of Nagao's conjecture to elliptic curves
长尾猜想在椭圆曲线上的应用
  • 批准号:
    562249-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    University Undergraduate Student Research Awards
Points on Elliptic Curves
椭圆曲线上的点
  • 批准号:
    562642-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了