Exceptional minimal sets of codimension two on flows
流上余维二的异常最小集
基本信息
- 批准号:15540078
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.Construction of surface diffeomorphisms with exceptional minimal setsIn 1995, McSwiggen constructed a surface diffeomorphism with a locally connected exceptional minimal set. He inserted a cylindrical hole along a leaf of the strong unstable foliation of a 3-dimensional hyperbolic toral automorphism. We constructed a new example from a 3-dimensional projectively Anosov diffeomorphism.2.Exceptional minimal sets for group actions on surfacesIn particular, we studied exceptional minimal sets of group actions on the sphere. In the case of hyperbolic groups, it is well known that there are many shapes of exceptional minimal sets. Then we consider the problem what is the easiest group which acts on a surface with a complicated minimal sets. We showed that the exceptional minimal set of an action of a nilpotent group is not homeomorphic to the Siepinski carpet. Furthermore, in the case of the fundamental groups of torus bundles over the circle, we obtain some partial results.3.Minimal flows of 3-dimensional manifoldsOn minimal flows, we investigated their infinitesimal flows and projective flows, we obtain the following dynamical properties :(1)We used Zimmer's theory in order to obtain invariant fiber measures of projective flows, and deduced several topologaical properties of the original flows.(2)We investigated minimal flows whose projective flows have exactly two minimal sets, and we showed that it is topologically equivalent to an irrational flow if its projective flow has more than three minimal sets. Furthermore, there is a bundle section separating the minimal sets if there are exactly two minimal sets.(3)Contreras obtained important results on weakly partially hyperbolic flows. We used his theory to the projective flows and proved the existence of the "upper" orbits and the "lower" orbits of the projective flow if it has exactly two minimal sets.
1.具有例外极小集的曲面微分同胚的构造1995年,McSwiggen构造了具有局部连通例外极小集的曲面微分同胚。他插入了一个圆柱孔沿着一片叶子的强烈不稳定叶理的三维双曲toral自同构。我们从三维射影Anosov同态中构造了一个新的例子。2.曲面上群作用的例外极小集特别地,我们研究了球面上群作用的例外极小集。在双曲群的情况下,众所周知,存在许多例外极小集的形状。然后我们考虑了什么是作用在具有复杂极小集的曲面上的最简单群的问题。证明了幂零群作用的例外极小集不同胚于Siepinski地毯。3.三维流形的最小流在最小流上,我们研究了它们的无穷小流和射影流,得到了如下动力学性质:(1)利用Zimmer理论得到了射影流的不变纤维测度,并推导了原流的若干拓扑性质。(2)We研究了投影流恰好有两个极小集的极小流,证明了如果它的投影流有三个以上的极小集,它与无理流是拓扑等价的。此外,如果恰好有两个极小集,则存在分离极小集的丛截面。(3)Contreras得到了弱部分双曲流的重要结果。我们把他的理论应用到射影流上,证明了当射影流恰好有两个极小集时,射影流的“上”轨道和“下”轨道的存在性。
项目成果
期刊论文数量(79)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Precise spectral asymptotics for logistic equations of population dynamics
种群动态逻辑方程的精确谱渐近
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Inaba;A.Bi's;T.Kobayashi;T.Aikou;T.Kobayashi;T.Aikou;T.Shibata
- 通讯作者:T.Shibata
Asymptotic expansion of the boundary layers of the perturbed simple pendulum problems
摄动单摆问题边界层的渐近展开
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:T.Aikou;T.Shibata
- 通讯作者:T.Shibata
The power of the tangent bundle of the real projective space, its complexification and extendibility
实射影空间切丛的幂及其复杂性和可扩展性
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:T.Kobayashi
- 通讯作者:T.Kobayashi
The steepest point of the boundary layers of singularly perturbed semilinear elliptic problems
- DOI:10.1090/s0002-9947-04-03468-3
- 发表时间:2004-01
- 期刊:
- 影响因子:1.3
- 作者:T. Shibata
- 通讯作者:T. Shibata
Asymptotic expansion of solutions to nonlinear elliptic eigenvalue problems,
非线性椭圆特征值问题解的渐近展开,
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Kobayashi;G.Hector;T.Shibata;T.Shibata
- 通讯作者:T.Shibata
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAYAMA Hiromichi其他文献
NAKAYAMA Hiromichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKAYAMA Hiromichi', 18)}}的其他基金
Elucidation of the mechanism of hematogenous organ-specific metastasis formation focusing on the heterogeneity of angiogenesis mechanism of hematogenous organ-specific metastasis formation
阐明血行器官特异性转移形成机制,重点关注血行器官特异性转移形成的血管生成机制的异质性
- 批准号:
20K17657 - 财政年份:2020
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
On rotation sets for angular velocity
关于角速度的旋转集
- 批准号:
19540090 - 财政年份:2007
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




