Algebraic structure of compact-like topological groups and convergence properties

紧类拓扑群的代数结构及收敛性

基本信息

  • 批准号:
    15540082
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

Let X be a subspace of a topological group G. We say that X topologically generates G provided that the smallest subgroup of G algebraically generated by X is dense in G. Among all closed subsets X of G topologically generating G there exists one that has the smallest possible weight w(X), and we call this weight topologically generating weight. We investigated the topologically generating weight of a compact group G and obtained the following results :Theorem 1.Topologically generating weight of a zero-dimensional compact Abelian group G coincides with the weight of G.Theorem 2.Topologically generating weight of a connected compact Abelian group G coincides with the omega-root of weight of G. (Here the omega-root of a cardinal k is the smallest possible cardinal s such that the omega power of s exceeds k.)Theorem 3.Topologically generating weight of a compact Abelian group G is equal to the product of the topologically generating weight of the connected component c(G) of G and the weight of G/c(G).We also study algebraic structure of countably compact Abelian group. In particular, we investigate whether an Abelian group G of size at most 2^c admits a countably compact group topology. (Here c denotes the cardinality of the continuum.) Using forcing, we have constructed a model M of Zermelo-Fraenkel Axioms of Set Theory in which the following Theorm 4 holds.Theorem 4.For an Abelian group G the following conditions are equivalent :(i)G admits a separable countably compact group topology,(ii)G admits a hereditarily separable countably compact group topology,(iii)G admits a hereditarily separable countably compact group topology without infinite compact subsets,(iv)G has size at most 2^c and satisfies conditions Ps and CC.Theorem 5.For an infinite Abelian group the following conditions are equivalent :(i)G has a separable pseudocompact group topology,(ii)G has cardinality between c and 2^c and satisfies condition Ps.
设X是拓扑群G的子空间。我们说X拓扑生成G,只要由X代数生成的G的最小子群在G中稠密。在G的所有拓扑生成G的闭子集X中,存在一个具有最小可能权w(X)的子集,我们称这个权为拓扑生成权。本文研究了紧群G的拓扑生成权,得到了如下结果:定理1.零维紧Abel群G的拓扑生成权与G的权重合.定理2.连通紧Abel群G的拓扑生成权与G的权的ω-根重合. (Here基数k的Ω根是使得s的Ω幂超过k的最小可能基数s。定理3.紧Abel群G的拓扑生成权等于G的连通分支c(G)的拓扑生成权与G/c(G)的权的乘积,并研究了可数紧Abel群的代数结构。特别地,我们研究了一个大小至多为2^c的阿贝尔群G是否允许一个可数紧群拓扑。(Here c表示连续统的基数。)定理4.对于阿贝尔群G,下列条件是等价的:(i)G容许可分可数紧群拓扑,(ii)G容许遗传可分可数紧群拓扑,(iii)G容许遗传可分可数紧群拓扑,(iv)G的大小至多为2^c,满足条件Ps和CC.定理5.对于无穷阿贝尔群,下列条件是等价的:(i)G有可分伪紧群拓扑,(ii)G的基数在c和2^c之间,且满足条件Ps.

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selection pointwise maximal spaces
选择逐点最大空间
Homogeneous systems of parameters in cohomology algebras of finite groups.
有限群上同调代数中的齐次参数系统。
Extensions of 2-point selections
2点选择的扩展
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Dolecki;H. Kunzi;T. Nogura;Toru Ohmoto;Jun O' Hara (今井の旧姓);D. Dikranjan; D. Shakhmatov;Jun O' Hara (今井の旧姓);K. Miyajima;Remi Langevin and Jun O'Hara;D. Dikranjan; D. Shakhmatov;H. Sainohira and Shoji Tsuboi;今井淳;S. Garcia-Ferreira; V. Gutev; T. Nogura
  • 通讯作者:
    S. Garcia-Ferreira; V. Gutev; T. Nogura
Around monothetic groups
围绕单一群体
Selection pointwise-maximal spaces
选择逐点最大空间
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHAKHMATOV D.B其他文献

SHAKHMATOV D.B的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了