Research on 3-manifolds by combinatorial and constructive methods

3-流形的组合和构造方法研究

基本信息

  • 批准号:
    15540091
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

In this research project, we have introduced a new topological invariant, called the "block number", for 3-manifolds, which estimates some kind of complexity of a 3-manifold just like as the Heegaard genus. The block number is defined by means of a flow-spine, and is enable us to classify 3-manifolds, and to parameterize 3-manifolds in each class by finitely many integers. Moreover the block number can be defined not only for a 3-manifold but also for a combed 3-manifold, a pair of a 3-manifold and a non-singular vector field on it. Using this invariant, we have gotten the following results :1.The only combed 3-manifold having 0 as its block number is the canonical one on the product of the 2-sphere and the circle, and combed 3-manifolds with the block number 1 are canonical ones on lens spaces (including the 3-sphere).2.The parameterization for 3-manifolds with the block number 2 was given. And, using the Reidemeister torsion, we have shown some results which imply that our parameterization uniformize the presentation of a combed 3-manifold.003.We have given a formula for calculating the value of the Thraev-Viro invariant for all Seifert fibered 3-manifolds.On symplectic manifolds, we have gotten the following result :4.If the universal covering space of a clsed symplectic manifold is contractible, the manifold does not admit any Riemannian metric with positive curvature.
在本研究项目中,我们为3流形引入了一个新的拓扑不变量,称为“块数”,它估计了3流形的某种复杂性,就像Heegaard属一样。利用流脊来定义块数,使我们能够对3流形进行分类,并用有限多个整数来参数化每一类中的3流形。此外,块数不仅可以定义3-流形,还可以定义梳状3-流形、3-流形对及其上的非奇异向量场。使用这个不变量,我们得到了以下结果:唯一块数为0的精梳3流形是2球与圆积上的正则流形,块数为1的精梳3流形是透镜空间(包括3球)上的正则流形。给出了块数为2的3流形的参数化。并且,利用Reidemeister扭转,我们给出了一些结果,这些结果表明我们的参数化统一了梳状3流形的表示。我们给出了计算所有Seifert纤维3-流形的Thraev-Viro不变量值的公式。在辛流形上,我们得到了以下结果:如果闭辛流形的普适覆盖空间是可缩并的,则该流形不存在任何正曲率的黎曼度规。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vertex‐disjoint cycles containing specified vertices in a bipartite graph
  • DOI:
    10.1002/jgt.10159
  • 发表时间:
    2004-07
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Guantao Chen;H. Enomoto;K. Kawarabayashi;K. Ota;Dingjun Lou;Akira Saito
  • 通讯作者:
    Guantao Chen;H. Enomoto;K. Kawarabayashi;K. Ota;Dingjun Lou;Akira Saito
量子的な微分幾何
量子微分几何
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大森英樹;前田吉昭
  • 通讯作者:
    前田吉昭
R.Mori, A.Nakamoto, K.Ohta: "Diagonal flips in Hamiltonian triangulations on the sphere"Graphs and Combinatorics. 19. 413-418 (2003)
R.Mori、A.Nakamoto、K.Ohta:“球体上哈密顿三角剖分中的对角线翻转”图和组合学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Meromorphic solutions of Riccati differential equations with doubly periodic coefficients
具有双周期系数的Riccati微分方程的亚纯解
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G.Chen;H.Enomoto 他;K.Ota;S.Shimomura;S.Shimomura
  • 通讯作者:
    S.Shimomura
K.Kawarabayashi, A.Nakamoto, K.Ohta: "2-connected 7-covering of 3-connected graphs on surfaces"J.Graph Theory. 43. 26-36 (2003)
K.Kawarabayashi、A.Nakamoto、K.Ohta:“曲面上 3 连通图的 2 连通 7 覆盖”J. 图论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHLI Ippei其他文献

ISHLI Ippei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

智障模型小鼠中树突棘可塑性的在体研究
  • 批准号:
    81100839
  • 批准年份:
    2011
  • 资助金额:
    14.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Translation potential of minimally invasive tubular retractors to maximize visualization in spine operations
I-Corps:微创管状牵开器的翻译潜力,可最大限度地提高脊柱手术的可视化
  • 批准号:
    2422243
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
  • 批准号:
    10748859
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
Molecular Mechanisms of Spine Disruption Developed from Mouse Strain Differences in Antiprion Drug Susceptibility
小鼠品系抗朊病毒药物敏感性差异导致脊柱破坏的分子机制
  • 批准号:
    23K05036
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the regulation mechanism of neural spine morphology and cognitive function by twinfilin-1
twinfilin-1对神经棘形态和认知功能调节机制的研究
  • 批准号:
    23H02669
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
  • 批准号:
    10649741
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
Dynamical maintenance of left-right symmetry during vertebrate development
脊椎动物发育过程中左右对称的动态维持
  • 批准号:
    10797382
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
Salud de tu Espalda Primary Care to Physical Therapy (STEPPT): Mitigating ethnic disparities in access and engagement in spine pain rehabilitation
Salud de tu Espalda 从初级保健到物理治疗 (STEPPT):减少脊椎疼痛康复获取和参与方面的种族差异
  • 批准号:
    10753365
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
Integrating Tailored Postoperative Opioid Tapering and Pain Management Support for Patients on Long-Term Opioid Use Presenting for Spine Surgery (MIRHIQL)
为脊柱手术中长期使用阿片类药物的患者整合定制的术后阿片类药物逐渐减量和疼痛管理支持 (MIRHIQL)
  • 批准号:
    10722943
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
The Pain in a Dish Assay (PIDA): a high throughput system featuring human stem cell-derived nociceptors and dorsal horn neurons to test compounds for analgesic activity
皿中疼痛测定 (PIDA):一种高通量系统,具有人类干细胞来源的伤害感受器和背角神经元,用于测试化合物的镇痛活性
  • 批准号:
    10759735
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
Vestibular and neck muscle contributions to head control in response to induced head perturbations and falls in balance-impaired older adults
前庭和颈部肌肉对头部控制的贡献,以应对平衡受损老年人的头部扰动和跌倒
  • 批准号:
    10789703
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了