Development of new iteration techniques for forcing

开发新的强制迭代技术

基本信息

  • 批准号:
    15540120
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

We develop new iterated forcing techniques and investigate the interplay between forcing theory and set theory of the reals, cardinal invariants of the continuum as well as descriptive set theory.(1)Shattered iterations.We further develop the technique of shattered iteration which is due to the present researcher. In particular, we prove the simultaneous consistency of cov(Μ)=b=N_2 and non(Μ)=N_3 by replacing Cohen reals by Hechler reals in the iteration framework.(2)Mixed support constructions.We show that in the model obtained by adding Cohen reals with mixed support over a model satisfying ◇,〓CH,〓_s for all stationary S⊆ω_1, and MA for countable forcing notions simultaneously hold, thus answering a question of Fuchino, Shelah, and Soukup.(3)Cardinal invariants related to the rationals.For any cardinal invariant 〓 of P(ω)/fin, let 〓_Q denote the corresponding invariant of Dense(Q) / nwd(Q). We answer questions of Balcar, Hernandez, and Hrusak by proving s_Q【less than or equal】min{add(Μ),s}, as well as the consistency of h_Q < s_Q and of h < h_Q.(4)Cardinal invariants related to partitions of ω.Let (ω) stand for the partitions of natural numbers ordered by almost refinement, and denote by 〓_c the cardinal invariant of (ω) corresponding to the cardinal invariant 〓. We show that 〓= 〓_c for 〓 = p,h,s,τ, that a_c = a_s, and that t_c = p.(5)Forcing indestructibility of mad families.Extending work of Hrusak and Kurilic, we provide a combinatorial characterization of P-indestructibility of mad families for several classical forcing notions P and, assuming a weak fragment of M A, we construct mad families which are P-indestructible yet Q-destructible for several pairs of forcing notions (P, Q).(6)Silver measurability.We investigate the doughnut property, a notion of measurability related to Silver forcing. In particular, we characterize the Δ^1_2 doughnut property and the Σ^1_2 doughnut property as transcendence statements over the constructible universe L..
我们开发了新的迭代强迫技术,并调查强迫理论和集合论的实数,基数不变量的连续体以及描述集理论之间的相互作用。(1)破碎迭代法:进一步发展了本研究者提出的破碎迭代法。特别地,在迭代框架下,用Hechler实数代替Cohen实数,证明了cov(M)=B= N2和non(M)= N3的同时相容性.(2)混合支撑结构:我们证明了在满足条件的模型上添加混合支撑的Cohen实所得到的模型中,对于所有平稳的S <$ω_1和可数强迫概念的MA同时成立,从而回答了Fuchino,Shelah和Soukup的一个问题。(3)与有理数有关的基数不变量:对于P(ω)/fin的任何基数不变量,设φ_Q表示Dense(Q)/ nwd(Q)的相应不变量。我们通过证明s_Q[小于或等于]min{add(M),s}以及h_Q < s_Q和h < h_Q的一致性来回答Balcar,埃尔南德斯和Hrusak的问题。(4)与ω的分拆有关的基数不变量:设(ω)表示自然数的几乎加细分拆,用ω_c表示(ω)的基数不变量。我们证明了对于φ = p,h,s,τ,φ = φ_c,a_c = a_s,t_c = p.(5)mad族的强迫不可破坏性推广了Hrusak和Kurilic的工作,我们给出了几个经典强迫概念P的mad族的P-不可破坏性的组合刻画,并假设MA的一个弱片段,我们构造了几对强迫概念(P,Q)的P-不可破坏而Q-可破坏的mad族。(6)银的可测性:我们研究了与银强迫有关的可测性概念--甜甜圈性质。特别地,我们将Δ^1_2甜甜圈性质和Δ ^1_2甜甜圈性质刻画为可构造论域L上的超越陈述。

项目成果

期刊论文数量(73)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ゲーデルと20世紀の論理学(第4巻)
哥德尔与 20 世纪逻辑(第 4 卷)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;SAKAE FUCHINO;SAKAE FUCHINO;渕野 昌;AKIRA SUZUKI;Joerg Brendle;Sakae Fuchino;Sakae Fuchino;AKIRA SUZUKI;Yukio Kan-on;M.Shinoda;Yukio Kan-on;JOERG BRENDLE;M.Shinoda;Yukio Kan-on;M.Iizuka;Qing Fang;AKIRA SUZUKI;Yukio Kan-no;Yukio Kan-on;Joerg Brendle;Qing Fang;Sakae Fuchino;JOERG BRENDLE;JOERG BRENDLE;Qing Fang;Joerg Brendle;Qing Fang;Y.Kan-on;JORG BRENDLE;JORG BRENDLE;渕野 昌
  • 通讯作者:
    渕野 昌
AKIRA SUZUKI: "An alternative approach to comprehensive Grobner bases"Journal of Symbolic Computation. 36・3-4. 649-667 (2003)
AKIRA SUZUKI:“综合 Grobner 基的替代方法”符号计算杂志 36・3-4(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Some combinatorial properties defined in terms of elementary submodels
根据基本子模型定义的一些组合属性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;SAKAE FUCHINO;SAKAE FUCHINO
  • 通讯作者:
    SAKAE FUCHINO
Internal approachability no shoso to sono oyo (Several aspects of internal approachability and its applications)
内部可接近性 no shoso to sono oyo (内部可接近性的几个方面及其应用)
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;SAKAE FUCHINO;SAKAE FUCHINO;渕野 昌;AKIRA SUZUKI;Joerg Brendle;Sakae Fuchino;Sakae Fuchino;AKIRA SUZUKI;Yukio Kan-on;M.Shinoda;Yukio Kan-on;JOERG BRENDLE;M.Shinoda;Yukio Kan-on;M.Iizuka;Qing Fang;AKIRA SUZUKI;Yukio Kan-no;Yukio Kan-on;Joerg Brendle;Qing Fang;Sakae Fuchino
  • 通讯作者:
    Sakae Fuchino
Cardinal invariants of the continuum and combinatorics on uncountable cardinals
连续统的基数不变量和不可数基数的组合学
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;SAKAE FUCHINO;SAKAE FUCHINO;渕野 昌;AKIRA SUZUKI;Joerg Brendle;Sakae Fuchino;Sakae Fuchino;AKIRA SUZUKI;Yukio Kan-on;M.Shinoda;Yukio Kan-on;JOERG BRENDLE;M.Shinoda;Yukio Kan-on;M.Iizuka;Qing Fang;AKIRA SUZUKI;Yukio Kan-no;Yukio Kan-on;Joerg Brendle;Qing Fang;Sakae Fuchino;JOERG BRENDLE
  • 通讯作者:
    JOERG BRENDLE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BRENDLE Joerg其他文献

BRENDLE Joerg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Conferences on Boolean Algebras, Lattices, Algebraic Logic and Quantum Logic, Universal Algebra, Set Theory, and Set-Theoretic and Point-free Topology
布尔代数、格、代数逻辑和量子逻辑、泛代数、集合论、集合论和无点拓扑会议
  • 批准号:
    2223126
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
Set Theory in Topology and Dynamics
拓扑和动力学中的集合论
  • 批准号:
    2154229
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Applications of Set Theory to Topology and Topology to Model Theory
集合论在拓扑中的应用以及拓扑在模型论中的应用
  • 批准号:
    RGPIN-2016-06319
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Set Theory to Topology and Topology to Model Theory
集合论在拓扑中的应用以及拓扑在模型论中的应用
  • 批准号:
    RGPIN-2016-06319
  • 财政年份:
    2019
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Discovery Grants Program - Individual
Ultimate analysis of hierarchies in computability theory, descriptive set theory, and general topology
可计算性理论、描述集合论和一般拓扑中层次结构的终极分析
  • 批准号:
    19K03602
  • 财政年份:
    2019
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of Set Theory to Topology and Topology to Model Theory
集合论在拓扑中的应用以及拓扑在模型论中的应用
  • 批准号:
    RGPIN-2016-06319
  • 财政年份:
    2018
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Discovery Grants Program - Individual
Some applications of set theory to measure theory and general topology
集合论在测度论和一般拓扑中的一些应用
  • 批准号:
    105396-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Discovery Grants Program - Individual
Conferences on Boolean Algebras, Lattices, Universal Algebras, Set Theory, and Topology
布尔代数、格、通用代数、集合论和拓扑会议
  • 批准号:
    1728391
  • 财政年份:
    2017
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
Applications of Set Theory to Topology and Topology to Model Theory
集合论在拓扑中的应用以及拓扑在模型论中的应用
  • 批准号:
    RGPIN-2016-06319
  • 财政年份:
    2017
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Set Theory to Topology and Topology to Model Theory
集合论在拓扑中的应用以及拓扑在模型论中的应用
  • 批准号:
    RGPIN-2016-06319
  • 财政年份:
    2016
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了