Generalization, Discretization and Application of Nonlinear Integrable Systems Associated with Toroidal Lie Algebra Symmetry

环形李代数对称性非线性可积系统的推广、离散化及应用

基本信息

  • 批准号:
    15540208
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

1.The bilinear form of 1st modified hierarchy is obtained for the discrete equations associated with a modification of toroidal Lie algebra sl^<tor>_2. The method is applicable to multi-component case and a discretization of half of bilinear form for the SU(N) self-dual Yang-Mills equation is constructed.2.The instanton solutions for SU(N) self-dual Yang-Mills equation are reconstructed by taking the Green functions for 4-dimensional Laplacian as the components in the persymmetric determinant solution. The positions and amplitudes of instantons correspond to the phase constants and wave numbers of solitons and appear in the parameters of Green functions.3.The integrable discretization of soliton equations associated with the 2-toroidal symmetry is derived by applying the method of the SU(N) self-dual Yang-Mills case. It is also shown that the hierarchy of equations coincides with the one obtained through the non-isospectral deformation technique.4.By introducing infinitely many independent variables in the Hankel determinant expression of general solution for full-infinite 1-dimensional Toda lattice, it is shown that the components are simply obtained by applying the linear differential operators expressed in terms of the Schur polynomial to the seed function. The generating functions of components are given by the ratio of two Τ functions with a shift of discrete variable.
1.对环面李代数sl^ _2的一个变形所对应的离散方程组,得到了第一变形族的双线性形式<tor>。该方法适用于多分量情形,并构造了SU(N)自对偶Yang-Mills方程的半个双线性形式的离散化。2.以四维Laplacian的绿色函数作为过对称行列式解的分量,重构了SU(N)自对偶Yang-Mills方程的瞬子解。瞬子的位置和振幅对应于孤子的相位常数和波数,并出现在绿色函数的参数中。3.利用SU(N)自对偶Yang-Mills情形的方法,导出了2-环面对称孤子方程的可积离散化。通过在全无限一维户田格通解的Hankel行列式表达式中引入无穷多个独立变量,证明了将Schur多项式表示的线性微分算子应用于种子函数,可以简单地得到通解的分量.分量的母函数由两个T函数之比和离散变量的位移给出。

项目成果

期刊论文数量(64)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hypergeometric Solutions to the $q$-Painlev′e Equations
$q$-Painlev′e 方程的超几何解
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Kajiwara;T.Masuda;M.Noumi;Y.Ohta;Y.Yamada
  • 通讯作者:
    Y.Yamada
Sasa-Satsuma higher-order nonlinear Schrodinger equation and its bilinearization and multisoliton solutions
  • DOI:
    10.1103/physreve.68.016614
  • 发表时间:
    2003-07-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Gilson, C;Hietarinta, J;Ohta, Y
  • 通讯作者:
    Ohta, Y
Discrete Integrable Systems
  • DOI:
    10.1007/b94662
  • 发表时间:
    2010-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Grammaticos;T. Tamizhmani;Y. Kosmann-Schwarzbach
  • 通讯作者:
    B. Grammaticos;T. Tamizhmani;Y. Kosmann-Schwarzbach
K.Kajiwara: "_<10>E_9 solution to the elliptic Painleve equation"J.Phys.A. 36. L263-L272 (2003)
K.Kajiwara:“_<10>E_9 椭圆 Painleve 方程的解”J.Phys.A.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Special Solutions of Discrete Integrable Systems
  • DOI:
    10.1007/978-3-540-40357-9_3
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshihiro Ohta
  • 通讯作者:
    Yoshihiro Ohta
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OTHA Yasuhiro其他文献

OTHA Yasuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了