Study on Unit Commitment Problems for Large Scaled Distributed Generators
大型分布式发电机机组承诺问题研究
基本信息
- 批准号:15560250
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project presents the genetic algorithm solution to the thermal unit commitment problem. Unit commitment problem is one of the most difficult optimization problems in power systems as the search space is vast. To reduce search space, unit integration technique is proposed. The initial population is often generated randomly. However, it is difficult to generate feasible solutions. To obtain feasible initial solutions, initial population is generated based on load data. Therefore, feasible initial solutions can be obtained. Constraints, output range and operation cost varies with each unit. Units are classified into several groups based on minimum up/down times constraint. The operation schedule of small units is determined by numerical calculation based on cost characteristic. Other unit schedule is determined by genetic algorithm. To obtain more optimal operation schedule, new genetic operators are introduced. The intelligent mutation performs local hill-climbing optimization technique. From simulation results, the proposed method can be determined satisfactory commitment schedule in reasonable computation time.
本研究计画提出以遗传演算法求解热力机组组合问题。机组组合问题是电力系统最困难的优化问题之一,其搜索空间巨大。为了减小搜索空间,提出了单元集成技术。初始种群通常是随机生成的。然而,很难找到可行的解决方案。为了获得可行的初始解,初始种群的基础上产生的负载数据。因此,可以得到可行的初始解。约束条件、产量范围和运行成本因机组而异。根据最小上/下时间约束,将装置分为几组。小机组的运行计划是根据费用特性通过数值计算确定的。其它机组调度方案则采用遗传算法进行求解。为了得到更优的运行计划,引入了新的遗传算子。智能变异执行局部爬山优化技术。仿真结果表明,该方法能够在合理的计算时间内确定满意的承诺时间表.
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tomonobu Senjyu: "A Fast Technique for Unit Commitment Problem by Extended Priority List"IEEE Transactions on Power Systems. 18・2. 882-888 (2003)
Tomonobu Senjyu:“通过扩展优先级列表解决单元承诺问题的快速技术”IEEE Transactions on Power Systems 18・2(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fast solution technique for large-scale unit commitment problem using genetic algorithm
- DOI:10.1049/ip-gtd:20030939
- 发表时间:2003-11
- 期刊:
- 影响因子:0
- 作者:T. Senjyu;H. Yamashiro;K. Shimabukuro;K. Uezato;T. Funabashi
- 通讯作者:T. Senjyu;H. Yamashiro;K. Shimabukuro;K. Uezato;T. Funabashi
Tomonobu Senjyu: "Fast solution technique for large-scale unit commitment problem using genetic algorithm"IEE Proceedings - Generation, Transmission and Distribution. 150・6. 753-760 (2003)
Tomonobu Senjyu:“使用遗传算法的大规模机组承诺问题的快速解决技术”IEE 论文集 - 发电、传输和配电。150・6(2003 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A fast technique for unit commitment problem by extended priority list
- DOI:10.1109/pes.2003.1270471
- 发表时间:2003-05
- 期刊:
- 影响因子:0
- 作者:T. Senjyu;Kenji Shimabukuro;K. Uezato;T. Funabashi
- 通讯作者:T. Senjyu;Kenji Shimabukuro;K. Uezato;T. Funabashi
Fast solution technique for large-scals unit commitment problem using genetic algorithm
大规模机组组合问题的遗传算法快速求解技术
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Tomonobu Senjyu;Tomonobu Senjyu
- 通讯作者:Tomonobu Senjyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UEZATO Katsumi其他文献
UEZATO Katsumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UEZATO Katsumi', 18)}}的其他基金
STUDY ON HIGH EFFICIENCY OPERATION OF SOLAR GENERATION PLANT USING FUZZY CONTROL WITH ADAPTIVE SCHEME.
采用模糊控制自适应方案的太阳能发电站高效运行研究。
- 批准号:
08650342 - 财政年份:1996
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
- 批准号:
AH/Z000041/1 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
- 批准号:
2340519 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant