Development of high performance classification algorithm for ground penetrating radar systems used in landmine detection

地雷探测用探地雷达系统高性能分类算法的开发

基本信息

  • 批准号:
    15560300
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

In this research, we have developed a high performance classification algorithm for ground penetrating radar(GPR) systems used in landmine detection. A process of landmine detection is divided into two steps. The first step is the find stage, where all the various types of buried objects are located. The second stage, the identification stage, then differentiates landmines from stones and other objects using reference data. In this research, we have considered the identification stage. Results of this research are summarized as follows :1.Ground clutter removal and feature extractionIn order to remove clutters from the GPR data, we have proposed a method based on a Matching Pursuits with a dictionary whose elements are deformed incident pulses. After the removal of the clutters, we have extracted three kinds of target features related to wave correlation, energy ratio, and signal arrival time from the residual signals.2.High performance classification algorithmFor target classification, we have proposed two classification algorithms based on a theory of hidden Markov models and a likelihood ration test.3.Improvement of numerical method for data generationIn order to evaluate its classification performance, a Monte Carlo simulation using dataset generated by an FDTD method is required. Since it takes large computation time and storage capacity for generating hundreds of simulation data, we have improved the numerical method.4.Evaluation of performanceWe have presented the classification performance in the form of receiver operating characteristics curves and have shown that good classification performance has been obtained, even for landmines buried at shallow depths under rough ground surfaces. Performance evaluation using actual GPR data obtained through field experiments should also be undertaken. This important research problem is currently under investigation.
在这项研究中,我们已经开发了一个高性能的分类算法,用于探地雷达(GPR)系统在地雷探测。地雷探测过程分为两个步骤。第一步是寻找阶段,所有类型的埋藏物都被定位。第二阶段,即识别阶段,然后利用参考数据将地雷与石头和其他物体区分开来。在本研究中,我们考虑了识别阶段。本文的主要研究成果如下:1.地杂波去除与特征提取为了从探地雷达数据中去除杂波,本文提出了一种基于匹配追踪的方法,该方法的字典元素是变形的入射脉冲。在去除杂波后,从残留信号中提取了与波相关、能量比和信号到达时间相关的三种目标特征。2.高性能分类算法对于目标分类,提出了两种基于隐马尔可夫模型理论和似然比检验的分类算法3.数据生成数值方法的改进为了提高性能,需要使用FDTD方法生成的数据集进行Monte Carlo模拟。由于它需要大量的计算时间和存储容量,产生数百个模拟数据,我们已经改进了数值方法。4.性能评估我们已经提出了接收机工作特性曲线的形式的分类性能,并已表明,良好的分类性能已经获得,即使是埋在浅埋在粗糙地面下的地雷。还应利用通过实地试验获得的实际探地雷达数据进行性能评价。这一重要的研究问题目前正在调查中。

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification of Radar Targets from Multi-Aspect High Range-Resolution Radar Signatures Using Hidden Markov Model
使用隐马尔可夫模型对多方面高分辨率雷达特征中的雷达目标进行分类
西本昌彦: "Hidden Markov Modelを用いたレーダ信号の系列情報処理法とそのターゲット識別への応用"2003年光・電波ワークショップ論文集. EMT-03-29. (2003)
Masahiko Nishimoto:“使用隐马尔可夫模型的雷达信号序列信息处理方法及其在目标识别中的应用”2003 年光学和无线电研讨会论文集(2003 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Detection of Shallowly Buried Landmines Using Sequential Graound Penetrating Radar Signals
使用序列探地雷达信号检测浅埋地雷
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    西本昌彦;Masahiko Nishimoto
  • 通讯作者:
    Masahiko Nishimoto
粗い地表面下に埋設されたターゲットの識別のためのGPRデータ処理
探地雷达数据处理,用于识别埋在粗糙地面下的目标
A Method for Detecting Shallowly Buried Landmines Using GPR Signatures
一种利用探地雷达特征检测浅埋地雷的方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHIMOTO Masahiko其他文献

NISHIMOTO Masahiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHIMOTO Masahiko', 18)}}的其他基金

Radar signal processing using a state transition model and its application to target detection and nondestructive evaluation
使用状态转换模型的雷达信号处理及其在目标检测和无损评估中的应用
  • 批准号:
    25420335
  • 财政年份:
    2013
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a method of buried target identification for groundpenetrating radars using features extracted from some different signal spaces
利用从不同信号空间提取的特征开发探地雷达掩埋目标识别方法
  • 批准号:
    22560333
  • 财政年份:
    2010
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of high performance landmine classifier for ground penetrating radar
探地雷达高性能地雷分类器的研制
  • 批准号:
    18560340
  • 财政年份:
    2006
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of High-Resolution Signal Analysis for Radar Echoes by Using the Wavelet Transform
利用小波变换开发雷达回波高分辨率信号分析
  • 批准号:
    11650351
  • 财政年份:
    1999
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Visualization of Soil Water Flow Using Ground Penetrating Radar to Classify and Predict Preferential Flow
使用探地雷达可视化土壤水流以分类和预测优先流
  • 批准号:
    23H02325
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Automated 3D Imaging AI Ground Penetrating Radar to Revolutionize Disaster Search and Infrastructure Inspection
开发自动 3D 成像 AI 探地雷达,彻底改变灾害搜索和基础设施检查
  • 批准号:
    23H01650
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Imaging the past using methods of the future: computer-aided interpretation of ground-penetrating radar data collected at Roman towns in Italy
使用未来的方法想象过去:对在意大利罗马城镇收集的探地雷达数据进行计算机辅助解释
  • 批准号:
    EP/X024474/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Fellowship
Advances in Ground Penetrating Radar (GPR) for urban tree root detection and mapping
用于城市树根检测和绘图的探地雷达 (GPR) 进展
  • 批准号:
    RGPIN-2017-06953
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Discovery Grants Program - Individual
Advances in Ground Penetrating Radar (GPR) for urban tree root detection and mapping
用于城市树根检测和绘图的探地雷达 (GPR) 进展
  • 批准号:
    RGPIN-2017-06953
  • 财政年份:
    2021
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Discovery Grants Program - Individual
Industrial PhD Studentship in Unmanned Aerial Vehicle deployed Ground-Penetrating Radar for Buried Object Detection
无人机工业博士生部署探地雷达进行掩埋物体检测
  • 批准号:
    2507722
  • 财政年份:
    2021
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Studentship
Ground-penetrating radar for precision radio cosmology
用于精确射电宇宙学的探地雷达
  • 批准号:
    RTI-2022-00115
  • 财政年份:
    2021
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Research Tools and Instruments
Development of estimation methods for maximum depth and structure of tree roots using ground penetrating radar
利用探地雷达开发树根最大深度和结构估计方法
  • 批准号:
    20H03028
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Advances in Ground Penetrating Radar (GPR) for urban tree root detection and mapping
用于城市树根检测和绘图的探地雷达 (GPR) 进展
  • 批准号:
    RGPIN-2017-06953
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Discovery Grants Program - Individual
Remotely piloted aircraft system and ground penetrating radar investigation and development for aerial data collection
用于航空数据收集的遥控飞机系统和探地雷达调查和开发
  • 批准号:
    556398-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Applied Research and Development Grants - Level 1
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了