STUDY ON SELF ORGANIZATION NEWRAL NETWORK USING MICRO MAGNETIC SENSOR ARRAYS FOR VARIABLE-SYNAPSE COUPLING DEVICE
可变突触耦合器件微磁传感器阵列自组织NewRAL网络研究
基本信息
- 批准号:15560294
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The key functional devices which plays important role in the neural network, were variable- synapse couplings. However, it would be lead to both much increase of capacity of memory and complexity of the system, when we use a conventional digital system. In this study, to avoid this problem and to create a new type chip neural network device, we propose a new quick response variable-synapse coupling device based on micro-magnetic sensor arrays.The variable-synapse coupling device is extension device of a coil-pickup MI sensor device. The device operation for the synapse coupling was investigated. We obtained such result that operation speed of neural network would be much increase, when we use conventional C-MOS digital circuit in combination with the proposed synapse couplings.We also newly propose magnetic feedback neural network circuit. It was shown that the pulse neural network based on the magnetic feedback circuit works as a delta-sigma modulation function. It is concluded that the system is useful for conversion of analogue signal to digital signal in addition to high speed neural network operation.In summary, the proposed neural network is adapted for high precious signal processing which use not only probability of firing of neuron but also time correlation between firing. In another word, the high order brain function may be achieved, when we use pulse function neural network based on micro magnetic sensor arrays as variable-synapse couplings.
在神经网络中起重要作用的关键功能器件是可变突触耦合.然而,当我们使用传统的数字系统时,这将导致存储器容量的大量增加和系统的复杂性。本研究针对这一问题,提出了一种基于微磁传感器阵列的快速响应的可变突触耦合器件,该器件是线圈拾取式MI传感器的扩展器件,旨在构建一种新型的芯片神经网络器件。研究了突触耦合的器件操作。我们得到这样的结果,当我们使用传统的C-MOS数字电路与所提出的突触耦合相结合时,神经网络的运算速度将大大提高。我们还提出了新的磁反馈神经网络电路。结果表明,基于磁反馈电路的脉冲神经网络是一种delta-sigma调制函数。结果表明,该系统除了具有高速的神经网络运算能力外,还可用于模拟信号到数字信号的转换,适用于既利用神经元的放电概率又利用放电之间的时间相关性的高精度信号处理。也就是说,将基于微磁传感器阵列的脉冲函数神经网络作为可变突触耦合,可以实现高阶脑功能。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of Multifunction MI Sensor Device
多功能MI传感器装置的开发
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Mukai;Y.Baba;T.Enomoto;T.Uchiyama
- 通讯作者:T.Uchiyama
Magnetic-Feedback-Type Neural Circuit Based on a Variable-Synapse CouplingDevice Using an MI Microsensor Array
基于使用 MI 微传感器阵列的可变突触耦合装置的磁反馈型神经电路
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Uchiyama;T.Suzuki
- 通讯作者:T.Suzuki
MIマイクロセンサアレイを用いた可変シナプス結合素子によ磁気帰還ニューロ回路
使用 MI 微传感器阵列的具有可变突触耦合元件的磁反馈神经电路
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:内山 剛;鈴木 達也
- 通讯作者:鈴木 達也
Characterization of A/D conversion in FM function MI Sensor Device
FM 功能 MI 传感器设备中 A/D 转换的特性
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Yoshihiro Nakamura;Tsuyoshi Uchiyama;Kanao Mohri
- 通讯作者:Kanao Mohri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UCHIYAMA Tsuyoshi其他文献
UCHIYAMA Tsuyoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UCHIYAMA Tsuyoshi', 18)}}的其他基金
Development of highly sensitive magnetic field sensing system for the purpose of cell tissue functional evaluation
开发用于细胞组织功能评估的高灵敏度磁场传感系统
- 批准号:
24240080 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of contact less brain wave monitoring device using highly sensitiveMI sensor and its application for medical diagnosis
高灵敏MI传感器非接触式脑电波监测装置的研制及其在医疗诊断中的应用
- 批准号:
23650306 - 财政年份:2011
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of high performance micro magnetic sensor based on spin torque driving nano device
基于自旋矩驱动纳米器件的高性能微型磁传感器的研制
- 批准号:
20310073 - 财政年份:2008
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
- 批准号:
2332060 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
- 批准号:
23K24829 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
- 批准号:
23K11120 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
- 批准号:
23K10454 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
- 批准号:
23H03451 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant














{{item.name}}会员




