Research on the double exponential formula for indefinite integrals
不定积分双指数公式的研究
基本信息
- 批准号:15607017
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The double exponential (abbreviated as DE) transformation was first proposed in 1974 by Takahasi and Mori, the head investigator, in order to evaluate definite integrals efficiently. Until now it has come to be used in various fields of science and technology and also incorporated in several famous mathematical softwares such as Mathematica and Maple. On the other hand recently it has been found that the DE transformation can also be applied to efficient numerical evaluation of indefinite integrals. In fact in 2003 the head investigator and people in his group proposed a formula for indefinite integration combining the DE transformation and the Sinc method (DE-Sinc method) and they published two papers on the new formula in 2003 and 2005. As an application of the formula for indefinite integrals they proposed a new DE formula for efficient evaluation of iterated integrals and published also two papers. Also they applied the DE transformation to numerical solution of Volterra integral equations of the second kind and published a paper in 2005. Since a given ordinary differential equation can be transformed into a Volterra integral equation they proposed a new method based on the DE-Sinc method to solve numerically the initial value problem of ordinary differential equation. Furthermore they applied their idea to the solution of boundary value problems of ordinary differential equations. In September 2004 an international workshop titled "Thirty years of the double exponential transforms' was held in Research Institute for Mathematical Sciences, Kyoto University and it was a good opportunity to make the DE transformation more popular also to people from outside Japan.
双指数变换(double exponential transformation,简称DE变换)是由Takahasi和Mori于1974年提出的,目的是有效地计算定积分。到目前为止,它已被应用于各个科学技术领域,并已被纳入一些著名的数学软件,如Mathematica和Maple。另一方面,最近发现DE变换也可以应用于不定积分的有效数值计算。事实上,在2003年,首席研究员和他的小组成员提出了一个结合DE变换和Sinc方法的不定积分公式(DE-Sinc方法),他们在2003年和2005年发表了两篇关于新公式的论文。作为不定积分公式的应用,他们提出了一个新的DE公式,有效地评估迭代积分,并发表了两篇论文。他们还将DE变换应用于第二类沃尔泰拉积分方程的数值求解,并于2005年发表了一篇论文。由于给定的常微分方程可以转化为沃尔泰拉积分方程,他们提出了一种基于DE-Sinc方法数值求解常微分方程初值问题的新方法。此外,他们应用他们的想法解决边值问题的常微分方程。在2004年9月国际研讨会题为“三十年的双指数变换”举行了研究所数学科学,京都大学,这是一个很好的机会,使DE变换更受欢迎的人也来自日本以外。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numnerical solution of integral equations by means of the Sinc collocation method based on the double exponential transformation
基于双指数变换的Sinc配置法积分方程数值解
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Yoshida;J.Yamaguchi;Y.Kaneda;Mayinur Muhammad
- 通讯作者:Mayinur Muhammad
Double exponential tranformation in the Sine-collocation method for a boundary value problem with fourth-order ordinary differential equation
四阶常微分方程边值问题正弦配法中的双指数变换
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.Kaneda;T.Ishihara;T.Yabe et al.;Ahniyaz Nurmuhammad
- 通讯作者:Ahniyaz Nurmuhammad
森 正武: "二重指数関数型変換による不定積分の計算法"日本応用数理学会論文誌. 13・2. 361-366 (2003)
Masatake Mori:“使用双指数变换计算不定积分”日本应用数学学会汇刊13・2(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Double exponential transformation in the Sinc-collocation method for a boundary value problem with fourth-order ordinary differential equation
- DOI:10.1016/j.cam.2004.09.061
- 发表时间:2005-10
- 期刊:
- 影响因子:2.4
- 作者:Ahniyaz Nurmuhammad;M. Muhammad;M. Mori;M. Sugihara
- 通讯作者:Ahniyaz Nurmuhammad;M. Muhammad;M. Mori;M. Sugihara
Numerical solution of integral equations by means of the Sinc collocation method based on the double exponential transformation
- DOI:10.1016/j.cam.2004.09.019
- 发表时间:2005-05
- 期刊:
- 影响因子:2.4
- 作者:M. Muhammad;Ahniyaz Nurmuhammad;M. Mori;M. Sugihara
- 通讯作者:M. Muhammad;Ahniyaz Nurmuhammad;M. Mori;M. Sugihara
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORI Masatake其他文献
MORI Masatake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORI Masatake', 18)}}的其他基金
Developments of applications of the double exponential transformation
双指数变换的应用进展
- 批准号:
18560063 - 财政年份:2006
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the double exponential transformation subroutine package
双指数变换子程序包的研究
- 批准号:
12640119 - 财政年份:2000
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on visualization of the double exponential transformation
双指数变换的可视化研究
- 批准号:
09650077 - 财政年份:1997
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Research on Anomalous Diffusion Problem
反常扩散问题的数学研究
- 批准号:
06650072 - 财政年份:1994
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-operative Research of General Purpose FORTRAN Graphic Software System for Scientific Computation
通用FORTRAN科学计算图形软件系统合作研究
- 批准号:
05302028 - 财政年份:1993
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Research on Algorithms for Numerical Computation by Supercomputer
超级计算机数值计算算法研究
- 批准号:
61540142 - 财政年份:1986
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




