Development of Routing Algorithms for Interconnection Networks based on Cayley Graphs

基于凯莱图的互联网络路由算法开发

基本信息

  • 批准号:
    16500015
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

Research results are summarized as follows:- Algorithm for node-to-set disjoint paths problem in Transposition graphs,- Algorithm for node-to-set disjoint paths problem in Bubble-sort graphs,- Algorithm for node-to-node disjoint paths problem in Bi-rotator graphs,- Algorithm for node-to-set disjoint paths problem in Bi-rotator graphs,- Algorithm for node-to-node disjoint paths problem in Burnt Pancake graphs- Proposal of Incomplete Pancake graphs and Algorithm for node-to-node disjoint paths problem in them,- Proposal of Incomplete Rotator graphs and Algorithm for node-to-node disjoint paths problem in them,- Algorithm for node-to-set disjoint paths problem in Pancake graphs,- Algorithm for set-to-set disjoint paths problem in Pancake graphs,- Algorithm for Hamiltonian cycles and Hamiltonian paths in faulty Burnt Pancake graphs,- Computation of diameters of 14- to 17-Pancake graphs, and- Proposal of (n, k)-Pancake graphs and their performance evaluation.In this study, we aimed to develop algorithms that retain the functions to send messages even if some faults occur on internal nodes and/or links with several Cayley graphs including new topologies, and we have attained our goals. These results may be small contributions compared to the whole research activities with respect to the massively parallel systems. However, selection of topologies is the most important issue in the design and implementation of the massively parallel systems. Therefore, we are convinced that these results have great meaning as foundation of the future researches.
研究结果总结如下:- 置换图中节点到集合不相交路径问题的算法,-气泡排序图中节点到集合不相交路径问题的算法,-双旋转图中节点到节点不相交路径问题的算法,-双旋转图中节点到集合不相交路径问题的算法,-Burnt Pancake图中节点到节点不相交路径问题的算法-不完全Pancake图的提出及其节点到节点不相交路径问题的算法,-不完全旋转图的提出及其节点到节点不相交路径问题的算法,-Pancake图中节点到集合不相交路径问题的算法,- Pancake图中的集到集不相交路问题的算法,-有缺陷的Burnt Pancake图中的Hamilton圈和Hamilton路的算法,-14-到17-Pancake图的直径的计算,以及-(n,k)-Pancake图的提出及其性能评估。我们的目标是开发算法,即使在内部节点和/或具有包括新拓扑的若干Cayley图的链路上发生某些故障,也保留发送消息的功能,并且我们已经达到了我们的目标。这些结果相对于大规模并行系统的整体研究来说可能是微不足道的。然而,拓扑结构的选择是大规模并行系统设计和实现中最重要的问题。因此,我们相信这些结果对今后的研究具有重要的意义。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Algorithm for Node-to-Node Disjoint Paths Problem in Burnt Pancake Graphs
烧饼图中节点到节点不相交路径问题的算法
Node-to-Set Disjoint Paths Problem in Bi-Rotator Graphs
双旋转图中节点到集不相交路径问题
Node-Disjoint Paths in a Transposition Graph
转置图中的节点不相交路径
Computing the Diameters of 16-pancake Graph Using a PC Cluster
使用 PC 集群计算 16 煎饼图的直径
Container Problem in Burnt Pancake Graphs
烧焦的煎饼图中的容器问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KANEKO Keiichi其他文献

KANEKO Keiichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KANEKO Keiichi', 18)}}的其他基金

Development of Cluster-Fault-Tolerant Routing Algorithms in Cayley Graphs
凯莱图中集群容错路由算法的开发
  • 批准号:
    22500041
  • 财政年份:
    2010
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Cluster-Fault-Tolerant Routing Algorithms in Interconnection Networks
互连网络中集群容错路由算法的发展
  • 批准号:
    19500022
  • 财政年份:
    2007
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Routing Algorithms for Rotator Graphs
旋转图路由算法的开发
  • 批准号:
    13680398
  • 财政年份:
    2001
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了