Development of Blind Signal Separation Technologies and their Application to Next-Generation Mobile Communications

盲信号分离技术的发展及其在下一代移动通信中的应用

基本信息

  • 批准号:
    16500033
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

Blind Signal Processing (BSP) is now one of emerging areas in signal processing with theoretical foundations and many potential applications. In fact, BSP has become a very important topic of research and developments in many areas, in particular, in mobile communications, acoustics and speech processing, and biomedical engineering. The BSP techniques principally do not use any training data and do not assume a priori knowledge about parameters of instantaneous mixing or convolutive mixing systems. In this research, we deal with the blind signal (or source) separation (BSS) problem for convolutive mixtures with taking the application of BSS techniques to next-generation mobile communications in consideration. We proposed several procedures for BSS and investigate the effectiveness of the proposed procedures through digital simulation experiments.Roughly speaking, the proposed procedures are classified into the following three categories :(1)Adaptive super-exponential procedures : On-li … More ne BSS techniques in slowly time-varying environments.(2)Robust super-exponential procedures : Off-line BSS techniques in noisy environments.(3)Eigenvector procedures with reference signals : Off-line BSS techniques with a very high success rate of BSS.As for (1) and (2) above, although we proposed the original (multi-channel) super-exponential methods in 2000,we proposed an adaptive version of the original ones, which can be utilized in slowly time-varying environments. As for (3),in connection to the super-exponential methods, we extended the eigenvector method with reference signals for single-input-single-output (SISO) systems proposed by B.Jelonnek and K.D.Kammeyer in 1994 to the case for multi-input-multi-output (MIMO) systems. Our research group will investigate the eigenvector approach with reference signals further in future.Through the developments of the above three types of BSS procedures, we will establish a theoretical foundation for BSS in next-generation mobile communications. We believe that the theoretical foundation gives us a principle for designing advanced source retrievers (or equalizers) in next-generation mobile communications. Less
盲信号处理(BSP)是信号处理领域的一个新兴领域,有着广泛的理论基础和应用前景。事实上,BSP已经成为许多领域研究和开发的一个非常重要的主题,特别是在移动的通信、声学和语音处理以及生物医学工程中。BSP技术原则上不使用任何训练数据,并且不假设关于瞬时混合或卷积混合系统的参数的先验知识。本研究针对卷积混合信号的盲信号(或源)分离(BSS)问题,并考虑BSS技术在下一代移动的通信中的应用。我们提出了几种盲源分离方法,并通过数字仿真实验研究了所提出方法的有效性。粗略地说,所提出的方法可分为以下三类:(1)自适应超指数方法:On-li ...更多信息 新的BSS技术在缓慢时变的环境。(2)稳健的超指数过程:噪声环境中的离线BSS技术。(3)带参考信号的特征向量方法:离线盲源分离技术,盲源分离成功率非常高。对于上述(1)和(2),虽然我们在2000年提出了原始的(多通道)超指数方法,但我们提出了一种原始方法的自适应版本,可以在慢时变环境中使用。对于(3),结合超指数方法,我们将B.Jelonnek和K. D. Kammeyer在1994年提出的单输入单输出(SISO)系统的带参考信号的特征向量方法推广到多输入多输出(MIMO)系统的情况。本课题组将进一步研究基于参考信号的特征向量盲源分离方法,通过以上三种盲源分离方法的研究,为下一代移动的通信中的盲源分离奠定理论基础。我们相信,该理论基础为我们设计下一代移动的通信中先进的源取回器(或均衡器)提供了一个原则。少

项目成果

期刊论文数量(88)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust super-exponential methods for blind equalization of SISO systems with additive Gaussian noise
具有加性高斯噪声的 SISO 系统盲均衡的鲁棒超指数方法
Adaptive robust super-exponential algorithms for deflationary blind equalization of instantaneous mixtures
瞬时混合物紧缩盲均衡的自适应鲁棒超指数算法
Eigenvector algorithms using reference signals
使用参考信号的特征向量算法
Robust super-exponential methods for blind equalization of an SISO system with additive Gaussian noise,
用于具有加性高斯噪声的 SISO 系统盲均衡的鲁棒超指数方法,
Super-exponential methods incorporated with higher-order correlations for deflationary blind equalization of MIMO liner systems
结合高阶相关性的超指数方法用于 MIMO 线性系统的紧缩盲均衡
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

INOUE Yujiro其他文献

INOUE Yujiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了