Asymptotic properties of likelihood ratio statistics on non-inferiority hypothesis testing
非劣性假设检验似然比统计的渐近性质
基本信息
- 批准号:16500178
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have the following two research results.1.The non-inferiority testing problem between some treatments is discussed in survival model where the underlying distribution is exponential and data are subject to type I censoring. The asymptotic distribution of the likelihood ratio statistic is derived in two-sample and k-sample cases. One testing procedure for the non-inferiority testing hypotheses is proposed based on the likelihood ratio statistic.2.The non-inferiority testing problem between two treatments is discussed based on the likelihood ratio statistic. Let the underlying distribution for the two treatments be normally distributed with mean θ and μ, respectively, and common unknown variance. We consider the following general hypotheses including the non-inferiority hypotheses : H_0:θ≧h(μ) v.s. H_1:θ<h(μ), where h(μ)is any continuous and strictly increasing function. In this situation, the asymptotic distribution of the log-likelihood ratio statistic is obtained under the true value on the boundary of the hypotheses. When the true value is any differentiable point, the asymptotic distribution becomes 1/2+(1/2)x^2_1 irrespective to the function h(μ), where x^2_1 is the chi-squared random variable with one degree of freedom. On the other hand, if the true point is any non-differentiable point for the function h(,μ), the asymptotic distribution is expressed in the form depending on right and left differential coefficients of the function h(μ).
主要研究结果如下:1.在指数分布和I型截尾的生存模型中,讨论了治疗方案间的非劣效性检验问题。在两样本和k样本情形下,得到了似然比统计量的渐近分布。提出了一种基于似然比统计量的非劣效性检验假设的检验方法。2.讨论了基于似然比统计量的两种治疗方案之间的非劣效性检验问题。假设两种处理的基础分布均为正态分布,分别具有均值θ和μ,以及共同的未知方差。我们考虑以下一般假设,包括非劣效性假设:H_0:θ h(μ)v.s. H_1:θ<h(μ),其中h(μ)是任意连续的严格增函数。在这种情况下,对数似然比统计量的渐近分布是在假设边界上的真值下得到的。当真值是任意可微点时,渐近分布变为1/2+(1/2)x^2_1,与函数h(μ)无关,其中x^2_1是具有一个自由度的卡方随机变量。另一方面,如果真点是函数h(,μ)的任何不可微点,则渐近分布表示为依赖于函数h(μ)的左右微分系数的形式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAGI Yoshiji其他文献
TAKAGI Yoshiji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}