全固体電池安定動作の要“電解質/電極界面イオン伝導”を操る

操纵“电解质/电极界面离子传导”,这是全固态电池稳定运行的关键

基本信息

  • 批准号:
    22H01967
  • 负责人:
  • 金额:
    $ 10.23万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

安全な電池として全固体電池の実用化のニーズは大きい。全固体電池の性能を大きく左右する固体電解質の選択が重要であり、ガーネット型のイオン伝導酸化物Li7La3Zr2O12(LLZ)が実用材料として広く研究されている。電池性能を表すLLZ/電極間のイオン伝導特性の報告は多いものの、この特性はLLZの表面組成や表面形態に強く依存しているため、本質的な特性の理解に至っていない。本研究課題のでは、LLZの表面処理から、分析、特性評価のすべてのプロセスを大気非暴露で行える実験環境を構築し、電解質/電極界面における本質的なイオン伝導機構を明らかにすることを目指す。①LLZ固体電解質の合成:固相合成法によりLLZ固体電解質のペレットを作製した。全固体電池の充放電動作時に固体電解質間をリチウム金属が貫いてショートを起こす問題があるが、これを回避するために焼結密度の高いLLZペレットの作製に取り組んだ。添加剤(焼結助剤)の検討を行い、添加量よび焼結条件の最適化を行った。②LLZ表面組成の分析:焼結後のLLZ表面および深さ方向の組成をX線光電子分光分析により調べた。イオン伝導の妨げとなる炭酸リチウム層が形成されており、全固体電池の安定動作のためにはこの界面層を除去する必要がある。LLZの研磨方法、およびLi電極の形成法を検討し、LLZ/Li界面抵抗を低減させた。③電解質/電極界面抵抗の低減:LLZはLiと濡れ性が悪いことに起因して良好な接触界面が得られず、界面抵抗の増加を招く。界面抵抗の低減を目指して、LLZとLi電極間に中間層を挿入し、複数の中間層において界面抵抗が減少した。
Safety battery is a fully solid-state battery. The performance of the all-solid-state battery is important, and the selection of the solid electrolyte is important. Materials used in the conductive acid compound Li7La3Zr2O12 (LLZ) are researched and used. Battery performance tableすLLZ/electrode conductivity characteristics reportは多いものの、characteristicsはLL The surface composition of Z depends on the strong surface morphology, and the essential characteristics are understood. The subject of this research is surface treatment, analysis, and property evaluation of LLZ. The structure of the environment and the nature of the electrolyte/electrode interface are the guiding mechanism of the electrolyte/electrode interface. ①Synthesis of LLZ solid electrolyte: Solid-phase synthesis method, LLZ solid electrolyte is produced by the company. During the charging and discharging operation of the all-solid-state battery, there is a problem with the solid electrolyte between the solid electrolyte and the metal. The title is high and the density of the knot is high. The added value (yaki knot assisting factor) and the added amount are the optimum conditions for the roasted knot. ② Analysis of the surface composition of LLZ: The composition of the surface of the LLZ after baking was analyzed in the depth and direction and analyzed by X-ray photoelectron spectroscopy. The イオン伝是什么意思げとなる carbonic acid リチウムlayer が formation されており, all solid It is necessary to remove the interface layer for stabilization of the battery. LLZ grinding method, Li electrode formation method, and LLZ/Li interface resistance reduction. ③Reduction of electrolyte/electrode interface resistance: LLZ's good contact interface and the increase of interface resistance. The interface resistance is reduced, the interface resistance is reduced, the interlayer between the LLZ and Li electrodes is inserted, and the interface resistance of the complex intermediate layer is reduced.

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LiF被膜形成によるリチウムイオン電池用シリコン負極の特性改善
通过形成LiF涂层改善锂离子电池硅负极的特性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小倉 一真;上嶋 凌大;春田 正和
  • 通讯作者:
    春田 正和
透明全固体電池を目指したLi3Fe2(PO4)3薄膜電極の作製
透明全固态电池Li3Fe2(PO4)3薄膜电极的制备
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    口町 光希;河口 稜太;春田 正和
  • 通讯作者:
    春田 正和
リチウムイオン電池用Si負極のLiF被覆による寿命特性改善
通过LiF涂层改善锂离子电池硅负极的寿命特性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小倉 一真;上嶋 凌大;春田 正和
  • 通讯作者:
    春田 正和
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

春田 正和其他文献

春田 正和的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('春田 正和', 18)}}的其他基金

全固体電池安定動作の要“電解質/電極界面イオン伝導”を操る
操控“电解质/电极界面离子传导”,这是全固态电池稳定运行的关键
  • 批准号:
    23K23235
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

非平衡電磁波焼結による酸化物全固体電池の精密界面制御
非平衡电磁烧结氧化物全固态电池界面精确控制
  • 批准号:
    24K01162
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NMRによる全固体電池の界面・表面状態解析とイオン伝導現象の関係解明
利用NMR分析全固态电池的界面/表面状态并阐明离子传导现象之间的关系
  • 批准号:
    24K01597
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
全固体電池電極・電解質界面の機械的接合性と性能の相関性解析
全固态电池电极/电解质界面机械键合与性能相关性分析
  • 批准号:
    24K01616
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
動的ヘテロ界面のメカノエレクトロケモ効果解明-全固体電池と歯科治療への応用は?-
阐明动态异质界面的机械电化学效应 - 它在全固态电池和牙科治疗中有何应用?
  • 批准号:
    23K22624
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
革新的な乾式法による高性能全固体電池の創製
采用创新干法制造高性能全固态电池
  • 批准号:
    23K26441
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
全固体電池の高性能化に資する固体電解質内マルチスケールLiイオン輸送現象の解明
阐明固体电解质中的多尺度锂离子传输现象,有助于提高全固态电池的性能
  • 批准号:
    24K00798
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
高容量金属負極の安定な充放電動作を実現する全固体電池用酸化物固体電解質の創製
开发用于全固态电池的氧化物固体电解质,实现高容量金属负极的稳定充放电操作
  • 批准号:
    23K22739
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
全固体電池安定動作の要“電解質/電極界面イオン伝導”を操る
操控“电解质/电极界面离子传导”,这是全固态电池稳定运行的关键
  • 批准号:
    23K23235
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
全固体電池開発に向けた全反射蛍光XAFS法を用いた電極活物質/固体電解質界面評価
使用全反射荧光XAFS方法评估电极活性材料/固体电解质界面,用于全固态电池开发
  • 批准号:
    24K17775
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
表面超活性化による結晶化ガラスの常温成膜と全固体電池への展開
表面超活化微晶玻璃室温成膜及其在全固态电池中的应用
  • 批准号:
    23K26737
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了