The interplay between DNA replication speed and R-loop stability regulation and its consequences on genome/telomere integrity

DNA复制速度和R环稳定性调节之间的相互作用及其对基因组/端粒完整性的影响

基本信息

项目摘要

All cells suffer exogenous and endogenous replication stress that causes the slowing or stalling of replication forks and/or DNA synthesis. Eukaryotes have evolved a conserved surveillance system, the DNA replication checkpoint (DRC), to deal with replication stress. Our current concepts of the DRC are mostly based on studies using exogenous stressors like hydroxyurea (HU), an RNR inhibitor, which might have off-target effects other than dNTP depletion. In our preliminary work, the Lou lab has isolated several low-processivity yeast mutants of pol2, encoding the catalytic subunit of the leading strand replicase Pol ε. These mutants exhibit slow DNA synthesis without a significant change in mutation frequency, thus representing an ideal model to revisit DRC in the context of endogenous replication stress. Based on the intensive interactions between the Luke and Lou labs, as well as the sharing of unpublished resources between two groups since 2015, we propose to illustrate how replication processivity or velocity affects fork progression through different genomic regions, particularly difficult-to-replicate or R-loop forming areas including telomeres. We plan to (i) isolate and characterize the slow-replication mutants in budding yeast; (ii) elucidate the effects of replication velocity changes on genome-wide R-loop formation and stability, and telomere maintenance; (iii) reveal the mechanisms of DRC activation and its major downstream effectors in response to endogenous replication stress; (iv) expand the key findings to mammalian cell lines and implement these findings to genome instability-related human diseases including cancer.These studies will reveal the contribution of an overlooked aspect of DNA replication, the velocity, to genome stability maintenance, whereas most previous studies have focused on the fidelity of DNA replication. With the complete complementary expertise of Chinese and German teams to focus on a distinctive slow-replication model, we believe this project will expand our understanding of aging and genome instability-related diseases and may reveal replication velocity as a future therapeutic target.
所有细胞都承受外源性和内源性复制压力,导致复制分叉和/或DNA合成减慢或停滞。真核生物已经进化出一种保守的监视系统,即DNA复制检查点(DRC),以应对复制压力。我们目前对DRC的概念大多基于使用外源性应激源的研究,如RNR抑制剂羟基脲(HU),它可能具有dNTP耗竭以外的非靶向影响。在我们的初步工作中,楼的实验室已经分离了几个POL2的低加工酵母突变体,编码领先链复制酶POLε的催化亚单位。这些突变体表现出缓慢的DNA合成,而突变频率没有显著变化,因此代表了在内源性复制应激的背景下重新研究DRC的理想模型。基于Luke和Lou实验室之间的密集相互作用,以及自2015年以来两组之间共享未发表的资源,我们建议说明复制处理速度或速度如何影响不同基因组区域的分叉进展,特别是包括端粒在内的难以复制或R环形成区域。我们计划(I)分离和鉴定发芽酵母中的慢复制突变体;(Ii)阐明复制速度变化对全基因组R环的形成和稳定性以及端粒维持的影响;(Iii)揭示DRC激活及其主要下游效应因子响应内源复制压力的机制;(Iv)将关键发现扩展到哺乳动物细胞系,并将这些发现应用于包括癌症在内的与基因组不稳定相关的人类疾病。这些研究将揭示DNA复制的一个被忽视的方面,即速度,对维持基因组稳定性的贡献,而以前的大多数研究都集中在DNA复制的保真度上。随着中国和德国团队完全互补的专业知识专注于一种独特的慢复制模式,我们相信这个项目将扩大我们对衰老和基因组不稳定相关疾病的理解,并可能揭示复制速度作为未来的治疗目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Brian Luke, Ph.D.其他文献

Professor Dr. Brian Luke, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Brian Luke, Ph.D.', 18)}}的其他基金

The transcriptional and post-transcriptional regulation of non-coding RNA and RNA-DNA hybrids attelomeres and beyond
非编码 RNA 和 RNA-DNA 杂交体端粒等的转录和转录后调控
  • 批准号:
    435419331
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Grants
Understanding the effects of telomeric non-coding RNA and checkpoint adaptation on telomere dysfunction induced cellular senescence
了解端粒非编码 RNA 和检查点适应对端粒功能障碍诱导的细胞衰老的影响
  • 批准号:
    298748054
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Developmental Biology and Neurobiology
发育生物学和神经生物学
  • 批准号:
    336635433
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Professorships

相似海外基金

Interplay between the cellular DNA damage response and the HPV life cycle
细胞 DNA 损伤反应与 HPV 生命周期之间的相互作用
  • 批准号:
    10734394
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Evolutionary molecular biology of the interplay between the DNA damage response and innate immunity
DNA 损伤反应与先天免疫之间相互作用的进化分子生物学
  • 批准号:
    RGPIN-2020-04034
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms of DNA Demethylation: The Molecular Interplay Between Thymine DNA Glycosylase and Chromatin Structure
DNA 去甲基化机制:胸腺嘧啶 DNA 糖基化酶与染色质结构之间的分子相互作用
  • 批准号:
    2126416
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Evolutionary molecular biology of the interplay between the DNA damage response and innate immunity
DNA 损伤反应与先天免疫之间相互作用的进化分子生物学
  • 批准号:
    RGPIN-2020-04034
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary molecular biology of the interplay between the DNA damage response and innate immunity
DNA 损伤反应与先天免疫之间相互作用的进化分子生物学
  • 批准号:
    RGPIN-2020-04034
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Interplay between RNA Pol II transcription and DNA replication
RNA Pol II 转录和 DNA 复制之间的相互作用
  • 批准号:
    BB/S016155/1
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigating the interplay between SNM1 nucleases in the repair of DNA interstrand crosslinks and double strand breaks
研究 SNM1 核酸酶在 DNA 链间交联和双链断裂修复中的相互作用
  • 批准号:
    504578-2017
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Deciphering the interplay between H3K36 and DNA methylation in renal cancer
解读肾癌中 H3K36 和 DNA 甲基化之间的相互作用
  • 批准号:
    10363746
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Deciphering the interplay between H3K36 and DNA methylation in renal cancer
解读肾癌中 H3K36 和 DNA 甲基化之间的相互作用
  • 批准号:
    9896790
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Deciphering the interplay between H3K36 and DNA methylation in renal cancer
解读肾癌中 H3K36 和 DNA 甲基化之间的相互作用
  • 批准号:
    9472131
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了