In silico prediction of small molecule ligands for class Frizzled GPCRs and investigation of the structural basis of FZD signalling
卷曲 GPCR 类小分子配体的计算机预测和 FZD 信号传导结构基础的研究
基本信息
- 批准号:470002134
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:WBP Fellowship
- 财政年份:2021
- 资助国家:德国
- 起止时间:2020-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the described project receptors from a subfamily of the superfamily of G protein-coupled receptors (GPCRs), the class Frizzled (class F) GPCRs, will be investigated. This subfamily consists of ten Frizzled (FZD) paralogues and Smoothened (SMO), of which the prior are of interest here. The main focus will be directed towards the discovery and characterisation of novel small molecule ligands by using a combined approach of in silico and in vitro methods. Representative members of the four FZD homology clusters (FZD4, FZD5, FZD6 and FZD7) will be targeted in docking screens with large molecular libraries to find novel small molecule ligands for these receptors. In the further process, the potential ligands that were selected from these screens will be characterised in cell-based in vitro assays regarding the affinity, receptor activation and recruitment of effector proteins as well as induction of FZD signalling pathways. Further, the selectivity of the ligands regarding different FZDs will be evaluated. Based on these results, structure-activity analyses can be pursued to gain insights into the connection between protein-ligand interactions and the affinity as well as effect of these ligands. The resulting novel ligands will be used for further investigations of FZDs and their signalling. Insights into the rational modulation of FZD signalling by ligands can be of great impact for drug development as well as a general understanding of FZDs. Furthermore, the mechanisms of recruitment and the interactions of Dishevelled (DVL) and heterotrimeric G proteins with FZDs will be investigated further in the described project. In silico methods such as Molecular Dynamics simulations will be employed to elucidate which receptor conformations lead to the recruitment of which effector proteins. First, the simulations will be conducted in complex with small molecule ligands, while this might be expanded to including the endogenous ligands of the Wingless/Int-1 (WNT) family at a later point of the project. Hypotheses resulting from this will be evaluated and confirmed in cell-based in vitro assays. Results from this part of the project will contribute to the understanding how FZD conformations leading to recruitment of different effector proteins are stabilised and how a recruitment bias between DVL and G proteins can be explained and modulated.
在所描述的项目中,将研究G蛋白偶联受体(GPCRs)超家族中的一个子家族的受体,即FrizzledGPCRs类(F类)。这个亚家族由10个Frizzled型(FZD)和Smoothened型(SMO)组成,其中的前一个是这里感兴趣的。主要的重点将集中在发现和表征新的小分子配体,使用在电子和体外的方法相结合的方法。四个FZD同源簇(FZD4、FZD5、FZD6和FZD7)的代表成员将成为与大分子文库对接的目标,以寻找这些受体的新的小分子配体。在进一步的过程中,从这些筛选中选择的潜在配体将在基于细胞的体外分析中表征,包括亲和力、受体激活和效应蛋白的招募以及FZD信号通路的诱导。此外,还将评估配体对不同FZD的选择性。基于这些结果,结构-活性分析可以深入了解蛋白质-配体相互作用与这些配体的亲和力和作用之间的联系。得到的新型配体将用于FZD及其信号转导的进一步研究。深入了解配体对FZD信号的合理调节对于药物开发以及对FZD的一般理解都有很大的影响。此外,在描述的项目中,将进一步研究杂乱(DVL)和异源三聚体G蛋白与FZD的招募机制和相互作用。在计算机技术中,分子动力学等方法将被用来阐明哪种受体构象导致哪种效应蛋白的募集。首先,模拟将在带有小分子配体的复合体中进行,而这可能会在项目的后期扩展到包括Wingless/Int-1(WNT)家族的内源配体。由此产生的假说将在基于细胞的体外试验中进行评估和确认。该项目这一部分的结果将有助于理解导致不同效应蛋白招募的FZD构象是如何稳定的,以及如何解释和调节DVL和G蛋白之间的招募偏见。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Magdalena M. Scharf其他文献
Dr. Magdalena M. Scharf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
- 批准号:51079080
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非编码RNA与蛋白质相互作用预测算法的研究
- 批准号:31000586
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
- 批准号:
10680745 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Salivary miRNAs as Prognostic Markers of Pulmonary Hypertension Associated with Bronchopulmonary Dysplasia in Extremely Low Gestational Age Infants
唾液 miRNA 作为极低胎龄婴儿支气管肺发育不良相关肺动脉高压的预后标志物
- 批准号:
10739639 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Non-target analysis of maternal and cord blood samples: Advancing computational tools and discovering novel chemicals
母体和脐带血样本的非目标分析:改进计算工具并发现新型化学物质
- 批准号:
10191991 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Non-target analysis of maternal and cord blood samples: Advancing computational tools and discovering novel chemicals
母体和脐带血样本的非目标分析:改进计算工具并发现新型化学物质
- 批准号:
10766529 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Development of a Mechanism and Structure-Guided Methodology for De Novo Enzyme Design
开发从头酶设计的机制和结构引导方法
- 批准号:
10231920 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Non-target analysis of maternal and cord blood samples: Advancing computational tools and discovering novel chemicals
母体和脐带血样本的非目标分析:改进计算工具并发现新型化学物质
- 批准号:
10394398 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Computational prediction of gut microbiome-mediated drug metabolism
肠道微生物介导的药物代谢的计算预测
- 批准号:
10256102 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Development of a Mechanism and Structure-Guided Methodology for De Novo Enzyme Design
开发从头酶设计的机制和结构引导方法
- 批准号:
10457838 - 财政年份:2021
- 资助金额:
-- - 项目类别:














{{item.name}}会员




