Reduced-order modelling of jet noise using a map-based stochastic turbulence approach

使用基于地图的随机湍流方法对喷气噪声进行降阶建模

基本信息

项目摘要

Jet engines produce noise in different ways, but mainly this noise comes from the high-speed exhaust stream that leaves the nozzle at the rear of the engine. And planes are loudest when they move slowly, such as at takeoff or landing. As the exhaust stream meets relatively still air, it creates tremendous shear that quickly becomes unstable. The evaluation of the performance of new noise-reducing concepts crucially depends on robust but economical numerical methods for modelling of source mechanisms of the acoustic processes in the relevant Mach number flow regimes. The purpose of this research proposal is to gain a better understanding of the missing noise in the range of high-frequencies, which exhibits a high annoyance penalty, and limited frequency bandwidth predictions and to develop a simulation tool to predict the same. This proposal contributes to the later via a map-based stochastic reduced-order modelling approach. Simulating a complex phenomenon like jet turbulence requires the use of an extremely high-resolution mesh to represent the dynamics involved. A typical simulation could have 500 million grid points. Multiply that by five to account for pressure, density and three components of velocity to describe the flow at every grid point. That equates to billions of degrees of freedom or the number of variables a computer uses to simulate the noise from a single idealised jet. The important question that arises here is whether the current status of these affordable high-resolution numerical simulations can be evolved further to answer the remaining questions about jet noise. In the proposed research, I propose the development of a reduced-order modelling approach that has a unique possibility to incorporate detailed and resolved physics with the aim of increasing the fidelity of the simulation results on that level.The outcome of the intended research will be a jet noise prediction model that is scientifically well-grounded, involving a synthetic pressure field generated by the reduced-order model. More broadly, the research is intended to demonstrate reliable prediction of the pressure field of a turbulent jet, with implications well beyond the scope of the present study.
喷气式发动机以不同的方式产生噪音,但主要是这种噪音来自高速排气流,离开发动机后部的喷嘴。飞机在缓慢移动时声音最大,比如在起飞或降落时。当废气流遇到相对静止的空气时,它会产生巨大的剪切力,很快变得不稳定。新的降噪方案的性能评价关键取决于在相关马赫数流态下对声学过程的源机制进行建模的稳健但经济的数值方法。本研究提案的目的是更好地了解高频范围内的缺失噪声,该噪声具有较高的烦恼惩罚和有限的频率带宽预测,并开发一种模拟工具来预测相同的噪声。这一建议有助于后者通过基于地图的随机降阶建模方法。模拟像射流湍流这样的复杂现象需要使用极高分辨率的网格来表示所涉及的动力学。一个典型的模拟可能有5亿个网格点。将其乘以5,以说明压力,密度和速度的三个分量,以描述每个网格点处的流动。这相当于数十亿个自由度或计算机用来模拟单个理想喷气机噪音的变量数量。这里出现的重要问题是,这些负担得起的高分辨率数值模拟的现状是否可以进一步发展,以回答有关喷流噪声的剩余问题。在拟议的研究中,我提出了一个降阶建模方法,有一个独特的可能性,将详细和解决的物理,目的是增加仿真结果的保真度在该level.The预期的研究结果将是一个喷气噪声预测模型,这是科学上有充分的基础,涉及合成压力场降阶模型产生的。更广泛地说,这项研究的目的是证明可靠的预测湍流射流的压力场,其影响远远超出了本研究的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Sparsh Sharma, Ph.D.其他文献

Dr.-Ing. Sparsh Sharma, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Sparsh Sharma, Ph.D.', 18)}}的其他基金

Reduced-order modelling of jet noise using a map-based stochastic turbulence approach
使用基于地图的随机湍流方法对喷气噪声进行降阶建模
  • 批准号:
    470140694
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    WBP Fellowship

相似国自然基金

基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
体内亚核小体图谱的绘制及其调控机制研究
  • 批准号:
    32000423
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
  • 批准号:
    32000425
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
  • 批准号:
    31970585
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
  • 批准号:
    31960136
  • 批准年份:
    2019
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
染色质三维结构等位效应的亲代传递研究
  • 批准号:
    31970586
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
染色质三维构象新型调控因子的机制研究
  • 批准号:
    31900431
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
  • 批准号:
    31970589
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Poisson Order, Morita 理论,群作用及相关课题
  • 批准号:
    19ZR1434600
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Kummer扩张的代数几何码的若干问题研究
  • 批准号:
    11701317
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Deep learning for reduced order modelling of wall bounded, turbulent flows
用于壁面湍流降阶建模的深度学习
  • 批准号:
    2753788
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Combating the tyranny of scales in simulation with reduced order modelling
通过降阶建模对抗模拟中尺度的暴政
  • 批准号:
    556294-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Combating the tyranny of scales in simulation with reduced order modelling
通过降阶建模对抗模拟中尺度的暴政
  • 批准号:
    556294-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Reduced-order modelling of jet noise using a map-based stochastic turbulence approach
使用基于地图的随机湍流方法对喷气噪声进行降阶建模
  • 批准号:
    470140694
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    WBP Fellowship
Combating the tyranny of scales in simulation with reduced order modelling
通过降阶建模对抗模拟中尺度的暴政
  • 批准号:
    556294-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Sparsity-promoting reduced order modelling techniques for separated turbulent flows
分离湍流的稀疏促进降阶建模技术
  • 批准号:
    1939255
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Fast Bayesian Non-Linear Aeroelastic Computation Using Reduced Order Modelling
使用降阶建模的快速贝叶斯非线性气动弹性计算
  • 批准号:
    496610-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Fast Bayesian Non-Linear Aeroelastic Computation Using Reduced Order Modelling, High Performance Computing and Wind Tunnel Tests
使用降阶建模、高性能计算和风洞测试的快速贝叶斯非线性气动弹性计算
  • 批准号:
    496872-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Reduced order modelling of acoustical systems based on measurement data
基于测量数据的声学系统降阶建模
  • 批准号:
    504367810
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Engineering-based reduced-order modelling of districts in the context of heuristic life cycle assessment
启发式生命周期评估背景下基于工程的地区降阶建模
  • 批准号:
    531801923
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了