Study on estimable parametric functions of balanced fractional factorial designs
平衡部分因子设计的可估计参数函数研究
基本信息
- 批准号:14580348
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this study, we obtained very closed relationship between the existence conditions of a solution in the system of the matrix equations and the existence conditions of a design of some resolution derived from a simple(partially)balanced array. Further-more the irreducible representation of the information matrix w.r.t. the ideals of some algebra can be described by the product of Gram matrix whose elements are given by only the suffix of an array.1.Construction and analysis of a designs : (1)2^m-BFF designs case : Using the rank conditions of the Gram matrix, we obtained 2^m-BFF designs of resolutions R^*({0,1}l3)and R^*({1})l3), where the number of assemblies(or treatment combinations)(=N, say)is less than the number of non-negligible factorial effects(=v_3, say). Furthermore using the algebraic structure of some association scheme, we presented the ANOVAof a 2^m- BFF design of resolution R^*({0,1}l3). (2) 2^<m1+m2>-PBFF designs case : In this case, we obtained all 2^<m1+m2>-B F F designs of resolution IV, where N<vand 2【less than or equal】 m_k【less than or equal】4.2.Optimality criteria : As a generalization of the ordinary A- and D-optimality criteria, we proposed three kinds of GA_α- and GD_α-0ptimality criteria each(α=0, 1,2), which reflect the confounded(or aliased)relationship among the factorial effects to be non-negligible but not to be interest in estimation. However these new optimality criteia will be reprodued by new methods, but now it is not be sure.3.Optimal designs : (1)2^m-BFF designs case : GAα and GDα optimal 2^m-BFF designs of resolution R^*({0,1})l3) ware obtained, where 6【less than or equal】m【less than or equal】8 and N<v_3, and in addition GAα-optimal 2^m-BFF designs of resolution R^*({ 1})l3)ware also obtained, where 6【less than or equal】m【less than or equal】8 and N<v_3. (2)2^<m1+m2>-PBFF designs case : We obtained GAα-potimal 2^<m1+m2>-PBFF designs of resolution IV, where N<vand2【less than or equal】m_κ【less than or equal】4.
在本研究中,我们得到了矩阵方程组解的存在条件与由简单(部分)平衡阵列导出的某种分辨率设计的存在条件之间的密切关系。此外,信息矩阵w.r.t.的不可约表示可以用格拉姆矩阵的积来描述,这些格拉姆矩阵的元素仅由数组的后缀给出。设计的构建和分析:(1)2^m-BFF设计案例:使用Gram矩阵的秩条件,我们获得了分辨率R^*({0,1}l3)和R^*({1})l3的2^m-BFF设计,其中集合(或处理组合)的数量(例如=N)小于不可忽略的阶乘效应的数量(例如=v_3)。进一步利用关联方案的代数结构,给出了分辨率为R^*({0,1}l3)的2^m- BFF设计的方差分析。(2) 2^<m1+m2>-PBFF设计情况:在这种情况下,我们获得了分辨率IV的所有2^<m1+m2>-B FF设计,其中N<vand 2小于或等于m_k小于或等于4.2。最优性标准:作为普通a -和d -最优性标准的推广,我们提出了三种GA_α-和gd_α -0最优性标准(α= 0,1,2),它们反映了不可忽略但不感兴趣的析因效应之间的混淆(或别名)关系。然而,这些新的最优性准则将被新的方法复制,但目前还不确定。最优设计:(1)2^m- bff设计情况:获得了分辨率为R^*({0,1})l3)的GAα和GDα最优2^m- bff设计,其中6个分辨率为R^*({1})l3)的设计,其中6个分辨率为m ^*({0,1}) 8,且N<v_3;此外,还获得了分辨率为R^*({1})l3)的GAα-最优2^m- bff设计,其中6个分辨率为m ^*({1})l3)的设计,其中m ^*(小于或等于)8,且N<v_3。(2)2^<m1+m2>-PBFF设计情况:我们获得了分辨率IV的ga α-正极2^<m1+m2>-PBFF设计,其中N<vand2【小于或等于】m_κ【小于或等于】4。
项目成果
期刊论文数量(142)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designs for diallel crosses for test versus controle comparisons
用于测试与对照比较的双列杂交设计
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:R.N.Mohan;尹 松;K.C.Choi
- 通讯作者:K.C.Choi
Dualisation with respect to restricted t s-tuples
受限 t 元组的对偶化
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S.Kageyama
- 通讯作者:S.Kageyama
Construction of group divisible and nested group divisible designs
组可分设计和嵌套组可分设计的构造
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:R.K.Mitra
- 通讯作者:R.K.Mitra
Constructions of resolvable group divisible and related designs
可解析群可分及相关设计的构造
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Y.Kawano;K.Kimura;H.Sekigawa;M.Noro;K.Shirayanagi;et al.;若月 大輔;編集責任者:佐々木 嘉則;R.K.Mitra
- 通讯作者:R.K.Mitra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUWADA Masahide其他文献
KUWADA Masahide的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUWADA Masahide', 18)}}的其他基金
Study on construction and analysis of balanced fractional3^m factorial designs-main effects being estimable
平衡分式3^m因子设计的构建与分析研究——主效应可估计
- 批准号:
17500181 - 财政年份:2005
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)