Asymptotic Analysis and Applications of Transition Layers and Interfaces
过渡层和接口的渐近分析及应用
基本信息
- 批准号:16540107
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, systems of reaction-diffusion (convection) equations are investigated from a viewpoint of singular limit analysis. The results obtained are summarized as follows.1. In spherically symmetric multidimensional domains, reaction-diffusion systems of activator-inhibitor type are studied when the reaction rate of inhibitor is weak and the diffusion rate of activator is small. It is shown that symmetry breaking bifurcations of transition layer solutions occur as the diffusion rate of inhibitor is decreased. The bifurcation takes place infinitely often.2. In activator-inhibitor systems of reaction-diffusion equations, when the reaction rates of both components are comparable and the diffusion rate of inhibitor is large, it is shown that symmetry breaking bifurcations of transition layer solutions occur as the diffusion rate of activator is decreased. The bifurcation takes place infinitely often. Moreover, the typical wave length in the direction parallel to the interf … More ace scales as proportional to the square root of the diffusion rate of activator.3. Allen-Cahn equation is considered in three dimensional bounded domains, and stationary transition layer solutions whose interface intersects the domain boundary are studied. It is found that such solutions are possible only when the interface is a minimal surface intersecting the domain boundary in right angle. Moreover, the stability of such stationary transition layers is determined by an elliptic boundary value problem on the minimal surface with Robin type boundary conditions. For specific types of domains, construction of stationary transition layer solutions are carried out and their stability conditions are explicitly expressed in the form of computable quantities.4. For scalar reaction-diffusion-convection equations of bi-stable type, asymptotic singular perturbation analysis is carried out to derive an interface equation which clearly displays the effects of convection on the motion of transition layers. It is suspected that the convection may stabilize stationary transition layers which without convection is know to be unstable. Less
在本研究计画中,我们从奇异极限分析的观点来研究反应扩散(对流)方程组。主要研究结果如下:1.在球对称多维区域上,研究了当抑制剂的反应速率较弱,而激活剂的扩散速率较小时,激活剂-抑制剂型反应扩散系统.结果表明,随着抑制剂扩散速率的减小,过渡层解出现对称破缺分岔。分叉发生的频率是无限的。在反应扩散方程的活化剂-抑制剂系统中,当两组分的反应速率相当且抑制剂的扩散速率较大时,随着活化剂扩散速率的减小,过渡层解出现对称破缺分岔.分叉发生的频率是无限的。此外,在平行于干涉方向上的典型波长 ...更多信息 ACE与活化剂扩散速率的平方根成比例。在三维有界区域中考虑Allen-Cahn方程,研究了界面与区域边界相交的过渡层定常解.结果表明,只有当界面是与区域边界成直角相交的极小曲面时,这种解才是可能的。此外,这种稳定的过渡层的稳定性是由一个椭圆边值问题的极小曲面上的Robin型边界条件。对于特定类型的区域,构造了定态过渡层解,并以可计算量的形式明确地表达了其稳定性条件.对于双稳态类型的纯量反应扩散对流方程,通过渐近奇异扰动分析,推导出了界面方程,该方程清楚地显示了对流对过渡层运动的影响。人们怀疑对流可以稳定静止的过渡层,而没有对流是不稳定的。少
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Infinitely many fine modes bifurcating from radially symmetric internal layers
从径向对称内层分叉出无限多个精细模式
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:J.Hale;K.Sakamoto;K.Sakamoto
- 通讯作者:K.Sakamoto
A Lyapunov-Schmidt method for transition layers in reaction-diffusion systems
反应扩散系统中过渡层的 Lyapunov-Schmidt 方法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:J.Hale;K.Sakamoto
- 通讯作者:K.Sakamoto
Spherically symmetric internal layers for activator-inhibitor systems I
用于激活剂-抑制剂系统 I 的球对称内层
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Sakamoto;H.Suzuki
- 通讯作者:H.Suzuki
Front motion in viscous conservation laws with stiff source terms
具有刚性源项的粘性守恒定律中的前向运动
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J.Haerterich;K.Sakamoto
- 通讯作者:K.Sakamoto
Infinitely many fine modes bifurcating from radically symmetric internal layers
从根本对称的内层分叉出无限多个精细模式
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:J.Hale;K.Sakamoto;K.Sakamoto
- 通讯作者:K.Sakamoto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAKAMOTO Kunimochi其他文献
SAKAMOTO Kunimochi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAKAMOTO Kunimochi', 18)}}的其他基金
Asymtotic Analysis of Transition Layers Intersecting the Boundary
与边界相交的过渡层的渐近分析
- 批准号:
11640204 - 财政年份:1999
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Internal Transition Layrs for semilinear elliptic systems and a related free boundary problem
半线性椭圆系统的内部过渡层和相关的自由边界问题
- 批准号:
09640194 - 财政年份:1997
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
异种金属及相关材料在有序纳米金组装体界面上的可控电化学生长及电催化行为研究
- 批准号:20543001
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:专项基金项目
相似海外基金
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 2.05万 - 项目类别:
Studentship
A2M: Exploring in-silico predicted arms-races at the plant-pathogen interface
A2M:探索植物-病原体界面的计算机预测军备竞赛
- 批准号:
BB/Y000560/1 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
RII Track-1: Interface of Change: Building Collaborations to Assess Harvested and Farmed Marine Species Prioritized by Gulf of Alaska Communities Facing Environmental Shifts
RII Track-1:变革界面:建立合作来评估面临环境变化的阿拉斯加湾社区优先考虑的捕捞和养殖海洋物种
- 批准号:
2344553 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Cooperative Agreement
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
- 批准号:
2339387 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Analytic Number Theory at the Interface
界面上的解析数论
- 批准号:
2401106 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
REU Site: SURFing the Interface between Chemistry and Biology
REU 网站:探索化学与生物学之间的界面
- 批准号:
2348203 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
REU site: Research at the interface between engineering and medicine (ENGMED)
REU 网站:工程与医学之间的交叉研究 (ENGMED)
- 批准号:
2349731 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
CAREER: Engineering the nanoparticle interface for tunable biomolecular aggregation
职业:设计纳米颗粒界面以实现可调节的生物分子聚集
- 批准号:
2338117 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant














{{item.name}}会员




