Theoretical and Numerical Study on Sampled-Data Control of Parabolic Distributed Parameter Systems

抛物型分布参数系统采样数据控制的理论与数值研究

基本信息

  • 批准号:
    16540111
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

This research is concerned with sampled-data H_∞ control of parabolic systems with unbounded output operators. Especially, the output operator is assumed to be (-L)^γ-bounded, where 0<γ<1/2. For example, diffusion systems with boundary control can be formulated as parabolic systems with output operators of such a type. For the parabolic system with an ideal sampler and a zero-order hold, the aim is to construct a finite-dimensional discrete-time stabilizing controller that makes the L^2 -induced norm of the feedback sampled-data system less than a given positive number. For that purpose, the infinite-dimensional continuous-time system is formulated as an infinite-dimensional discrete-time system by using a lifting technique and a variable transformation. Based on a reduced-order model with a finite-dimensional state space for the infinite-dimensional discrete-time system, a finite-dimensional controller containing a residual mode filter is designed to provide the desirable performance.Moreover, systems whose axial dispersion coefficients are sufficiently small and can be neglected are treated as control objects. A parallel-flow heat exchanger with boundary inputs is described by two parabolic equations when the axial dispersion is taken into consideration. On the other hand, the parabolic equations become hyperbolic equations in the case where the axial dispersion can be neglected. In this research, the stability analysis is carried out, for the closed-loop system which consists of the hyperbolic system and an output feedback law. In addition, the dynamical analysis such as observability and reachability is performed for the hyperbolic system.
研究了具有无界输出算子的抛物系统的采样数据H_∞控制问题。特别地,假设输出算子是(-L)γ有界的,其中0&lt;γ&lt;1/2。例如,具有边界控制的扩散系统可以表示为具有这类输出算子的抛物型系统。对于具有理想采样器和零阶保持的抛物系统,目标是构造一个有限维离散时间镇定控制器,使反馈采样数据系统的L^2诱导范数小于给定的正数。为此,利用提升技术和变量变换,将无限维连续时间系统表示为无限维离散时间系统。基于具有有限维状态空间的无限维离散时间系统的降维模型,设计了包含剩余模滤波器的有限维控制器以提供期望的性能,并且将轴向色散系数足够小且可以忽略的系统作为控制对象。考虑轴向扩散时,具有边界输入的平行流换热器可用两个抛物线方程描述。另一方面,在轴向色散可以忽略的情况下,抛物型方程变成了双曲型方程。针对由双曲系统和输出反馈律组成的闭环系统,进行了稳定性分析。此外,还对双曲系统进行了能观测性、能达性等动力学分析。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observability and reachability for parallel-flow heat exchanger equations
  • DOI:
    10.1093/imamci/dnl016
  • 发表时间:
    2007-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Sano
  • 通讯作者:
    H. Sano
非有界出力作用素をもつ線形放物型システムのサンプル値H∞制御
具有无界输出算子的线性抛物线系统的样本值H∞控制
境界フィードバックを伴う並流型熱交換方程式の指数安定性について
边界反馈平行流换热方程的指数稳定性
On exponential stability of parallel-flow heat exchanger equations with boundary feedback
边界反馈并流换热器方程的指数稳定性
On the stability of a linear bioprocess model with recycle loop
具有循环回路的线性生物过程模型的稳定性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SANO Hideki其他文献

SANO Hideki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SANO Hideki', 18)}}的其他基金

Theoretical and Numerical Studies on Stabilization and Decay Rate Estimation of Hyperbolic Boundary Control Systems
双曲边界控制系统稳定及衰减率估计的理论与数值研究
  • 批准号:
    20540123
  • 财政年份:
    2008
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Self-protective Oxidation-resistant Carbon Matrix Materials
自保护抗氧化碳基材料
  • 批准号:
    09044176
  • 财政年份:
    1997
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了