Development of system identification algorithm for health monitoring of infrastructures

基础设施健康监测系统识别算法的开发

基本信息

  • 批准号:
    16560415
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

System identification technique to autoassociate hysteretic characteristics is proposed by learning a nonlinear dynamic structure which is represented by a system dynamics model. As this regard, neural network's learning serves as the means. The criterion function is defined by the sum of squared output errors which takes into account the energy of earthquake motion input to the structure. In order to obtain a regularly directed learning, effective use of the structural learning is considered as an alternative method for parameter and system identification problems. A global and local iteration procedure is proposed to obtain stable and fast convergency in the learning of recurrent networks.A method is developed to identify parameters on a hysteretic restoring system of non-degrading type by applying the wavelet transform. By this method, a nonlinear model of non-degrading type equivalent to any hysteretic system may be identified in terms of the model's parameters at the stage of their stable convergency to optimal ones. Numerical examples give satisfactory results to identify dynamic parameters of model structure with 3-degree-of-freedom.Effective identification scheme for hysteretic, degrading multi-degree of freedom shear beam structures is developed using importance sampling and rejection sampling filters. The effects and the accuracy of this procedure are analyzed by comparing with the conventional methods. Using converged parameters resimulated responses and hysteretic force characteristic are compared with known true ones. Stable solutions as well as their fast convergency to the optimum ones are obtained. It is found by numerical examples that the proposed method is a powerful tool for parameter identification.
通过学习由系统动力学模型表示的非线性动态结构,提出了自关联滞回特性的系统辨识技术。在这方面,神经网络的学习作为手段。准则函数定义为输出误差的平方和,它考虑了输入到结构的地震运动能量。为了获得有规则的有向学习,有效地利用结构学习作为参数和系统辨识问题的一种替代方法。为了在递归网络学习中获得稳定快速的收敛,提出了一种全局和局部迭代的方法,并利用小波变换对非退化类型的滞后恢复系统进行了参数辨识。用这种方法,可以根据模型稳定收敛到最优阶段的参数来辨识等价于任何滞后系统的非退化类型的非线性模型。数值算例对三自由度模型结构的动力参数进行了识别,获得了令人满意的结果。针对滞回、退化的多自由度剪力梁结构,提出了基于重要性采样和剔除采样滤波的有效识别方案。通过与常规方法的比较,分析了该方法的效果和精度。利用收敛后的参数,重新模拟了结构的响应和滞回力特性,并与已知的真实结果进行了比较。得到了稳定解及其快速收敛到最优解的结果。数值算例表明,该方法是一种强有力的参数辨识工具。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
効率的なサンプリングフィルタを用いた劣化履歴非線形振動系の構造同定
使用高效采样滤波器的具有退化历史的非线性振动系统的结构识别
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NODA Shigeru其他文献

NODA Shigeru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NODA Shigeru', 18)}}的其他基金

Response Analysis of Buried Continuous or Jointed Pipelines against Earthquake Ground Motion and Liquefaction
埋地连续或接缝管道对地震地震动和液化的响应分析
  • 批准号:
    24560584
  • 财政年份:
    2012
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Prediction of Long-period Earthquake Ground Motions and Sloshing Control of Large Tanks
长周期地震地面运动预测与大型储罐晃动控制
  • 批准号:
    18360219
  • 财政年份:
    2006
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on real-time estimation method of earthquake ground motions under imperfect information
不完善信息下地震地震动实时估计方法研究
  • 批准号:
    09680448
  • 财政年份:
    1997
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on active control of social system based on Artificial Life technology
基于人工生命技术的社会系统主动控制研究
  • 批准号:
    07308030
  • 财政年份:
    1995
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Studies on observation, identification and renewal theory for conditional stochastic field
条件随机场观测、辨识与更新理论研究
  • 批准号:
    06650522
  • 财政年份:
    1994
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Studies on structural identification and inteligent control system of seismic response
结构地震反应识别与智能控制系统研究
  • 批准号:
    04650406
  • 财政年份:
    1992
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Development of real-time damage estimation system of lifeline facilities using neural networks
利用神经网络开发生命线设施实时损伤估计系统
  • 批准号:
    03555103
  • 财政年份:
    1991
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)

相似海外基金

Bionic sensors for non-invasive health monitoring
用于无创健康监测的仿生传感器
  • 批准号:
    MR/Y003802/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Fellowship
CAREER: Next-generation Rhizosphere Monitoring - Non-invasive Plant Phenotyping and Health Monitoring Using the Light-piping Properties of Plant Stems
职业:下一代根际监测 - 利用植物茎的光管特性进行非侵入性植物表型和健康监测
  • 批准号:
    2238365
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
Development of health monitoring system for ship structures by inverse FEM
逆有限元法船舶结构健康监测系统开发
  • 批准号:
    22KJ0655
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
I-Corps: Intelligent wireless sensor network platform for extended human health monitoring
I-Corps:用于扩展人体健康监测的智能无线传感器网络平台
  • 批准号:
    2305389
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
  • 批准号:
    2401745
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
STTR Phase I: Machine Learning-Based Smart Data Compression Solutions for Structural Health Monitoring Sensors
STTR 第一阶段:用于结构健康监测传感器的基于机器学习的智能数据压缩解决方案
  • 批准号:
    2321884
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Nanobionic sensors for Real-Time Plant Health Monitoring
用于实时植物健康监测的纳米仿生传感器
  • 批准号:
    FT230100065
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    ARC Future Fellowships
Flexible polymer-based sensors for structural health monitoring in renewable energy-generating devices
用于可再生能源发电设备结构健康监测的柔性聚合物传感器
  • 批准号:
    2893927
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Studentship
Artificial Intelligence for structural health monitoring using graphene sensor systems (InteGraph)
使用石墨烯传感器系统进行结构健康监测的人工智能 (InteGraph)
  • 批准号:
    10066187
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Collaborative R&D
Intellipig: An automated on-farm pig health monitoring system
Intellipig:自动化农场生猪健康监测系统
  • 批准号:
    10073790
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了