Coding theory, the invariant theory for the finite fractional linear transformation groups and their applications to the number theory
编码理论、有限分数线性变换群的不变理论及其在数论中的应用
基本信息
- 批准号:17540006
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ozeki has obtained a remarkable result concerning the 40 dimensional even unimodular lattices. The result says that there are a pair of non equivalent 40 dimensional even unimodular lattices whose Siegel theta series of degree up to 2 coincide but Siegel theta series of degree 3 differ. Ozeki has recently completed the result as a research paper under the title "On a problem posed by S. Manni". Ozeki has conceived a new approach to the problem of determining the covering radius of n dimensional lattice covering by equal spheres, and he is preparing a research paper under the title "Two approaches to the lattice covering of whole space with equal spheres in general dimensions. He is now investigating the coset weight distributions of second order Reed-Muller code of length 64.Sawada has published two research papers including a paper entitled "On the utility of a bilateral system".Bannai has published seven research papers including a paper entitled "A note on integral Euclidean lattices in dimension 3". Kitazume has published two research papers which discuss the relation between the finite permutation groups and the self-dual codes.Murabayashi has published a paper entitled.
关于40维偶幺模格,Ozeki得到了一个显著的结果。结果表明,存在一对不等价的40维偶幺模格,它们的Siegel θ级数在2次以下重合,而3次的Siegel θ级数不同. Ozeki最近完成了一个研究论文,标题为“关于S。曼尼”。Ozeki设想了一种新的方法来确定由相等球体覆盖的n维格的覆盖半径的问题,他正在准备一份研究论文,标题为“两种方法来覆盖整个空间的相等球体在一般维度。他现在正在研究长度为64的二阶Reed-Muller码的陪集重量分布。Sawada发表了两篇研究论文,其中一篇题为“On the utility of a bilateral system”。Bannai发表了七篇研究论文,其中一篇题为“A note on integral Euclidean lattices in dimension 3”。Kitazzawa发表了两篇研究论文,讨论了有限置换群与自对偶码之间的关系。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On some self-dual codes and unimodular lattices in dimension 48
- DOI:10.1016/j.ejc.2004.06.013
- 发表时间:2005-07
- 期刊:
- 影响因子:0
- 作者:M. Harada;Masaaki Kitazume;A. Munemasa;B. Venkov
- 通讯作者:M. Harada;Masaaki Kitazume;A. Munemasa;B. Venkov
Madularity of CM elliptic curves over division fields.
划分域上 CM 椭圆曲线的 Madularity。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:M.Kitazame;N.CHigira;M.Harada;Naoki Murabayashi
- 通讯作者:Naoki Murabayashi
On the zeros of Hecke type Faber polynoinials.
关于 Hecke 型 Faber 多项式的零点。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:E.Bannai;K.Kojima;T.Miezaki
- 通讯作者:T.Miezaki
On the complete coset weight distribution of the extremal self-dual [46, 23, 10] code
- DOI:10.1109/tit.2005.850156
- 发表时间:2005-07
- 期刊:
- 影响因子:2.5
- 作者:M. Harada;T. Nishimura
- 通讯作者:M. Harada;T. Nishimura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OZEKI Michio其他文献
OZEKI Michio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OZEKI Michio', 18)}}的其他基金
Development of analysis for multidrug resistance protein 1 (MRP1) modulator
多药耐药蛋白 1 (MRP1) 调节剂分析的进展
- 批准号:
23791162 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Action mechanism and clinical application of leukotriene receptor antagonist as multidrug resistance protein 1 (MRP1) modulator
白三烯受体拮抗剂作为多药耐药蛋白1(MRP1)调节剂的作用机制及临床应用
- 批准号:
21790978 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study of the interacting area among the theory of quadratic forms and the theory of modular forms and the algebraic coding theory
二次型理论与模型理论及代数编码理论相互作用的研究
- 批准号:
14540004 - 财政年份:2002
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Coding Theory and the related studies of algebraic, geometric and analytic natures
代数编码理论以及代数、几何和解析性质的相关研究
- 批准号:
09440003 - 财政年份:1997
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B).