Explicit studies on singularities which appear on 3-dimensional algebraic varieties
3维代数簇上出现的奇点的显式研究
基本信息
- 批准号:17540019
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied on resolutions of 3-dimensional terminal singularities and 3-dimensional divisorial contractions and get the results below.(1) We construct birational morphisms from 3-folds with only terminal singularities with index 1 to 3-dimensional terminal singularities with index m greater than one, by repeating divisorial contractions with minimal discrepancy. As a result we determined all prime divisors over 3-dimensional terminal singularities with index greater than or equal to 2 which have discrepancy not greater than 1.(2) We showed that there does not exist economic resolutions due to M.Reid in its original form, which states that if there are partial resolutions of 3-dimensional terminal singularities with all prime divisors with discrepancy not greater than one as its exceptional divisors. We also showed that there are such economic resolutions after changing conditions on singularities.(3) We gave an explicit description of divisorial contractions which contract divisors to points with discrepancy one, for 3-dimensional terminal singularities with index greater than one. Such divisorial contractions are obtained by embedding singularities into four or five dimensional spaces and by making suitable weighted blowing ups.(4) We gave an explicit description of divisorial contractions of Gorenstein terminal singularities of type cD and cE with discrepancy one.
我们研究了三维终端奇点和三维除收缩的分解,得到了以下结果。(1)我们通过以最小的差异重复除法收缩,从仅具有指数为1的末端奇点的3重到指数m大于1的3维末端奇点构造双有理态射。结果确定了指数大于或等于2的三维终端奇点上的所有素因子,它们的偏差不大于1。(2)我们证明了不存在由M.Reid提出的原始形式的经济归结,即如果存在三维终端奇点的部分归结,其中所有的素因子的偏差不大于1,作为其例外因子。我们还证明了在改变奇点的条件后,存在这样的经济解决方案。(3)对于指数大于1的三维终端奇点,我们给出了将因子收缩到偏差为1的点的因子收缩的明确描述。这种除法压缩是通过将奇点嵌入到四维或五维空间中并进行适当的加权爆破而获得的。(4)我们给出了具有偏差1的Gorenstein型cD和cE终端奇点的整除收缩的一个明确的描述。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A remark on partial resolutions of 3-dimensional terminal singularities
关于3维终端奇点的部分分辨率的评论
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Morishita;Masanori;Takayuki Hayakawa;Takayuki Hayakawa
- 通讯作者:Takayuki Hayakawa
Gorenstein resolutions of 3-dimensional terminal singularities
3 维终端奇点的 Gorenstein 分辨率
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Morishita;Masanori;Takayuki Hayakawa
- 通讯作者:Takayuki Hayakawa
Pro-P link groups and P-homology groups
Pro-P 连接基团和 P-同源基团
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Hillman;Matei Morishifa
- 通讯作者:Matei Morishifa
On the Alexander stratification in the deformation Space of Galois characters
伽罗瓦特征变形空间中的亚历山大分层
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Morishita;Terashima;M.Morishita
- 通讯作者:M.Morishita
Morishita, Pro-p link groups and p-homology groups
Morishita,Pro-p 连接基团和 p-同源基团
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J.Hillman;D.Matei;M.
- 通讯作者:M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAYAKAWA Takayuki其他文献
HAYAKAWA Takayuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAYAKAWA Takayuki', 18)}}的其他基金
Studies on birational morphisms of 3-dimensional Algebraic varieties
3维代数簇的双有理态射研究
- 批准号:
19540017 - 财政年份:2007
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)