Extension property of holomorphic maps and complex structures of the target manifolds
全纯映射的可拓性质和目标流形的复杂结构
基本信息
- 批准号:17540094
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.We defined in our previous work an index which measures the extendibility of holomorphic maps of a Hartogs domain to complex manifolds. This index is useful to study quotient manifolds of "large" domains in complex projective 3-spaces. Here a domain in projective 3-space P^3 is "large", if the domain contains projective lines. Main result in this direction is the characterization of compact quotient of large domains with positive algebraic dimension. In this case, the large domain is dense in P^3 and the compement is very thin. Under an additional assumption, we could show that the quotient manifold is a P^3, a Blanchard manifold, or a L-Hopf manifold. We think that this additional assumption can be removed soon. To obtain this result we use also a recent result of S.Ivashkovich on extension of holomorphic maps into non-Kaehler manifolds.2.The result above is an analogy of the elementary type group case in Klein group theory of complex 1-dimension and suggests a possibility of constructing higher dimensional complex analytic Klein group theory. We could give basic definitions to develop 3-dimensional complex analytic Klein group theory and formulate many problems.3.Our research plan in the early stage was to seek good sufficient conditions of complex manifolds to be "probable". At present we have no results in this direction.
1.在之前的工作中,我们定义了一个度量Hartogs域的全纯映射到复流形的可扩展性的指标。该指标对复射影3-空间中“大”域商流形的研究是有用的。这里,射影3空间P^3中的一个域是“大”的,如果该域包含射影线。这一方向的主要成果是具有正代数维数的大域的紧商的刻画。在这种情况下,大的定义域在P^3上是密集的,而补很薄。在一个附加的假设下,我们可以证明商流形是一个P^3,一个Blanchard流形,或一个L-Hopf流形。我们认为这一额外的假设可以很快消除。为了得到这个结果,我们还使用了s.i avashkovich关于全纯映射扩展到非kaehler流形的最新结果。上述结果类比了复一维Klein群论中的初等型群情况,为构造高维复解析Klein群论提供了可能。我们可以给出基本的定义来发展三维复解析克莱因群论并形式化许多问题。我们前期的研究计划是寻求复杂流形“可能”的良好充分条件。目前我们在这方面还没有结果。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure of solutions of nonlinear partial differential equations of Gerard-Tahara type,
Gerard-Tahara 型非线性偏微分方程解的结构,
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Hidetoshi Tahara;Hiroshi Yamazawa
- 通讯作者:Hiroshi Yamazawa
Compact quotients of large domains in a complex projective 3-spaces
复射影 3 空间中大域的紧商
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J.Murakami;A.Ushijima;Masahide Kato
- 通讯作者:Masahide Kato
Uniqueness of the solution of nonlinear totally characte ristic partial differential equations
非线性全特征偏微分方程解的唯一性
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Yoshino;M.Suwa;Hidetoshi Tahara
- 通讯作者:Hidetoshi Tahara
Stochastic complexities of reduced rank regression in Bayesian estimation
- DOI:10.1016/j.neunet.2005.03.014
- 发表时间:2005-09-01
- 期刊:
- 影响因子:7.8
- 作者:Aoyagi, M;Watanabe, S
- 通讯作者:Watanabe, S
Compact quotients of large domains in a complex projective 3-space
复射影三空间中大域的紧商
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J.Murakami;A.Ushijima;Masahide Kato;Masahide Kato
- 通讯作者:Masahide Kato
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATO Masahide其他文献
KATO Masahide的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATO Masahide', 18)}}的其他基金
Extension property of holomorphic maps and the structure of complex manifolds
全纯映射的可拓性与复流形的结构
- 批准号:
19540100 - 财政年份:2007
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Projective structures on compex manifolds
复流形上的射影结构
- 批准号:
09640129 - 财政年份:1997
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




