Time dependent Phase Diagram
时间相关相图
基本信息
- 批准号:17560580
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Time dependent phase diagram is a hypothetical phase diagram which posses a time axis in addition to an ordinary composition axis. Hence, in the infinite time limit, it emerges to an equilibrium phase diagram. In order to deal with time dependent phenomena which is the basis of the time dependent phase diagram, we employed two theoretical tools. One is the Cluster Variation Method (and Path Probability Method) and the other is the Phase Field Method. In addition to these two methods, electronic structure calculation is also attempted to perform first-principles calculations. The Phase Field Method consists of Cahn-Hilliard diffusion equation and Time dependent Ginzubrug Landau equation. In general, Phase filed Method is employed to deal with microstructure evolution process and not much attempt has been performed for atomistic calculations. While Cluster Variation Method is the atomistic theory and deal with the statistical mechanics on the discrete lattice. In order to describe the multiscale phenomena from atomistic to microstructural scale in a consistent manner, it is indispensable to introduce a proper coarse graining procedure. The renormalization group theory is a rigorous mathematical tool, however it is not an easy task to apply the theory to individual problems. The body of this project has been devoted to establish and introduce coarse graining procedure which is proper enough to provide a reasonable result and efficient enough to perform calculations within a reasonable time scale. The developed method enables us to attempt first principles calculation of time evolution process of Anti Phase Boundary associated with the disorder-L10 transition for Fe-Pd and Fe-Pt systems. The procedure is quite powerful, however the coarse graining of the time scale remains as the future subject. This will be settled by extending Path Probability Method, and preliminary calculations are already attempted.
含时相图是一种假想的相图,它除了包含一个通常的成分轴外,还包含一个时间轴。因此,在无限的时间限制下,它会出现一个平衡相图。为了处理作为含时相图基础的含时现象,我们采用了两种理论工具。一种是簇变分法(和路径概率法),另一种是相场法。除了这两种方法,电子结构计算也尝试进行第一性原理计算。相场法由Cahn-Hilliard扩散方程和含时的Ginzubrug朗道方程组成。相场法一般用于处理微观结构的演化过程,对原子级计算的尝试不多。而集团变分法是原子论的理论,处理的是离散格点上的统计力学。为了以一致的方式描述从原子尺度到微观结构尺度的多尺度现象,引入适当的粗粒化过程是必不可少的。重整化群理论是一种严格的数学工具,然而将其应用于具体问题却不是一件容易的事情。该项目的主体致力于建立和引入粗粒化程序,该程序足够适当以提供合理的结果,并且足够有效以在合理的时间范围内执行计算。该方法使我们能够尝试用第一性原理计算Fe-Pd和Fe-Pt体系的无序-L10相变反相边界的时间演化过程。该过程是相当强大的,但是时间尺度的粗粒化仍然是未来的主题。这将通过扩展路径概率方法来解决,并且已经尝试了初步的计算。
项目成果
期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First-principles study from Electronic structure to Microstructure
从电子结构到微观结构的第一性原理研究
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Mohri;M.Ohno;Y.Chen;T.Mohri
- 通讯作者:T.Mohri
「第2巻ナノ金属」ナノマテリアル工学体系
《纳米金属第2卷》纳米材料工程体系
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Tetsuo Mohri;Munekazu Ohno;Ying Chen;毛利哲雄(分担執筆)
- 通讯作者:毛利哲雄(分担執筆)
First-principles calculation of phase stability, phase
相位稳定性第一性原理计算,相位
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Tetsuo Mohri;Munekazu Ohno;Ying Chen
- 通讯作者:Ying Chen
Phenomenological calculation of the Fe-Pd-based L10-ordered phase in the Fe-Pd-Ni ternary system
- DOI:10.1007/s11661-005-0320-z
- 发表时间:2005-08
- 期刊:
- 影响因子:0
- 作者:T. Horiuchi;M. Igarashi;F. Abe;K. Ohkubo;S. Miura;T. Mohri
- 通讯作者:T. Horiuchi;M. Igarashi;F. Abe;K. Ohkubo;S. Miura;T. Mohri
First-principles calculation of Fe-Ni phase diagram
Fe-Ni相图的第一性原理计算
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Ying Chen;Yu Jufuku;Tetsuo Mohri
- 通讯作者:Tetsuo Mohri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MOHRI Tetsuo其他文献
MOHRI Tetsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MOHRI Tetsuo', 18)}}的其他基金
Theory of phase equilibria and stability in k-space
k 空间中的相平衡和稳定性理论
- 批准号:
23560782 - 财政年份:2011
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-scale simulation on Multiferroics
多铁性材料的多尺度模拟
- 批准号:
20360287 - 财政年份:2008
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stability of an Ordered phase under Rapid Heating
快速加热下有序相的稳定性
- 批准号:
13305043 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Massive parallel calculations for phase transition driven by cooperative mechanisms with different time constants
不同时间常数协作机制驱动的相变大规模并行计算
- 批准号:
08650761 - 财政年份:1996
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electron Theory and Statistical Thermodynamics for Tegragonal Distortion
四方畸变的电子理论和统计热力学
- 批准号:
04452266 - 财政年份:1992
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Development of coupling approach of cluster variation method and phase field method using machine learning
利用机器学习开发簇变分法和相场法的耦合方法
- 批准号:
20K22456 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Applications of Cluster Variation Method to various internal freedom of alloys
簇变分法在合金各种内部自由度中的应用
- 批准号:
26289227 - 财政年份:2014
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of order-disorder transition in V-H system by the cluster variation method
聚类变异法分析V-H系统的有序-无序转变
- 批准号:
22560662 - 财政年份:2010
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cluster Variation Method (CVM) Modeling of Order-Disorder in Mineral Solutions
矿物溶液中有序-无序的聚类变分法 (CVM) 建模
- 批准号:
0003679 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Study on Foundation and Applications of the Cluster Variation Method (CVM) and Path Probability Method (PPM)
聚类变异法(CVM)和路径概率法(PPM)的基础及应用研究
- 批准号:
01044006 - 财政年份:1989
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for international Scientific Research














{{item.name}}会员




