Continuous Exploration of Infinitely Configurable Cyber-Physical Systems for Sample-based Testing (Co-InCyTe)
持续探索用于基于样本的测试的无限可配置网络物理系统 (Co-InCyTe)
基本信息
- 批准号:494838636
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Today's software comprises up to thousands of configuration options to adjust to diverse requirements, contexts and platforms. Each (Boolean) option doubles the size of the configuration space which makes quality assurance of every individual configuration practically impossible. Sampling strategies bypass this issue by defining criteria and algorithms for selecting preferable small, yet representative subsets of configurations. Unfortunately, recent sampling approaches are not ready for the upcoming era of safety-critical cyber-physical systems (CPS): (1) they are limited to finite configuration spaces, whereas CPS are literally infinitely configurable, (2) they require a configuration model explicitly specifying the valid configuration space which is not available for CPS in practice, (3) they generate samples in a one-shot manner requiring complete knowledge of the configuration space in advance, %which is also infeasible for CPS, (4) they apply black-box selection criteria, whereas effective sampling of CPS is impossible without additional domain knowledge, e.g., non-functional properties. The proposed project contributes a novel sampling methodology comprehensively tackling challenges (1) -- (4). For (1), we propose a novel configuration model integrating two concepts: feature models extended to infinite configuration spaces and trained classifiers to handle particularly complicated configuration constraints. Concerning (2), we adapt techniques for extracting configuration models from sets of known configurations. To tackle (3), we interleave configuration-model extraction and sample selection for continuously exploring unknown configurations. Finally, concerning (4), we use further solution-space knowledge in form of behavioral models and apply family-based analysis to identify critical configurations.
今天的软件包含多达数千种配置选项,以适应不同的需求、环境和平台。每个(布尔)选项都将配置空间的大小加倍,这使得每个单独配置的质量保证实际上是不可能的。抽样策略通过定义标准和算法来选择优选的小而有代表性的配置子集,从而绕过了这个问题。不幸的是,最近的采样方法还没有为即将到来的安全关键型网络物理系统(CPS)时代做好准备:(1)它们限于有限的配置空间,而CPS实际上是无限可配置的;(2)它们需要一个配置模型来明确指定有效的配置空间,而这在实践中是不可用的;(3)它们以一次性的方式生成样本,需要事先完全了解配置空间,这对CPS来说也是不可实现的;(4)它们采用黑盒选择标准。而如果没有额外的领域知识(例如,非功能属性),CPS的有效采样是不可能的。拟议的项目提供了一种新的采样方法,全面解决了挑战(1)-(4)。对于(1),我们提出了一种新的配置模型,该模型集成了两个概念:扩展到无限配置空间的特征模型和处理特别复杂的配置约束的训练分类器。关于(2),我们采用了从已知配置集合中提取配置模型的技术。为了解决(3),我们将配置模型提取和样本选择交叉进行,以不断探索未知配置。最后,关于(4),我们进一步以行为模型的形式使用解空间知识,并应用基于家庭的分析来识别关键配置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Malte Lochau其他文献
Professor Dr. Malte Lochau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Malte Lochau', 18)}}的其他基金
Integrated Model-based Testing of Continuously Evolving Software Product Lines (IMoTEP 2)
不断发展的软件产品线的基于模型的集成测试 (IMoTEP 2)
- 批准号:
284512969 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Fellowship
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Exploration of relationship between floods, poverty, and dynamic environmental sustainability
探索洪水、贫困和动态环境可持续性之间的关系
- 批准号:
24K07692 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enabling a circular economy for poultry via exploration of metabolism
通过探索新陈代谢实现家禽循环经济
- 批准号:
DE240100802 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: Artificial Intelligence for Multidisciplinary Exploration and Discovery (AIMED) in Heterogeneous Catalysis: A Workshop
会议:多相催化中的多学科探索和发现人工智能(AIMED):研讨会
- 批准号:
2409631 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Deciphering plant stress memory: the exploration of how DNA methylation and the rhizosphere microbiome control stress memory in plants
解读植物逆境记忆:探索DNA甲基化和根际微生物如何控制植物逆境记忆
- 批准号:
BB/Z514810/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
The Avebury Papers: digitisation, exploration and creative re-use of a uniquely important archaeological archive.
埃夫伯里文件:对独特重要的考古档案的数字化、探索和创造性再利用。
- 批准号:
AH/W003619/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant