非線型力学にもとづく少数多体系の統計的振舞の発現機構の解明

基于非线性动力学阐明少多系统统计行为的表达机制

基本信息

  • 批准号:
    08230206
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

分子およびクラスターの高振動励起状態の振動前期解離では「統計的振舞い」、すなわち解離速度が量子状態にランダムに依存するという現象が起こると理解されている。本研究の目的は、量子力学・古典力学の第一原理にもとづいて、少数多体系で「統計的振舞い」が如何なるメカニズムで現れるかを解明することである。振動前期解離は非弾性衝突の後半過程である。また、「統計的振舞」は古典極限で現れると考えられる。そこで、本研究では非弾性衝突の不規則散乱の散乱行列(S行列)の半古典量子化を実現した。不規則散乱では古典S行列は絶対収束しない無限級数で表される。本研究では滞在時間の短い順に和をとる条件収束の処方を採用した。不規則散乱の本質を定性的に表現するモデルにもとづいて研究を行った。先ず、古典S行列の計算に必要な作用積分を求めるための漸化式を導出した。更に、古典軌跡が相互作用領域に滞在する時間を求めるための漸化式を導出した。そして滞在時間の上限値を与えたときに、無限級数のどの項を考慮すればよいかを求める計算機コードを作成した。以上の方法論開発により、漸化式モデルにもとづいた不規則散乱について古典S行列を求める数値計算コードが得られた。今後の展開としては、漸化式モデルによらずに、古典運動方程式の積分により得られた古典軌跡にもとづいて古典S行列を計算する方法論を確立する。その上で、不規則散乱が起こっている系で量子散乱の遷移確率がどのように振る舞うかを明らかにする。
The pre-vibrational dissociation of molecules in the high vibrational excitation state is "statistical oscillation," and the dissociation speed is dependent on the quantum state. The purpose of this study is to clarify the first principles of quantum mechanics and classical mechanics, and how to solve the "statistical vibration" of a few multi-systems. The first half of the process of vibration dissociation is non-sexual conflict. The classical limit of "statistical vibration dance" is revealed. In this paper, the semi-classical quantization of irregular scattered arrays (S arrays) of non-uniform conflicts is realized. Irregularly scattered, classical S columns, infinite series This study is based on a short time delay and a short time delay. The nature of irregular scattering is studied in detail. The calculation of the classical S matrix is necessary to obtain the integral of the function. In addition, the classical trajectory and the interaction domain lag in time, the gradual formula is derived. The upper limit of the delay time and the term of the infinite series are considered The above methodological development is based on the calculation of the value of the classical S matrix. In the future, the method of calculating the classical motion equation will be established. In the case of quantum scattering, irregular scattering occurs. In the case of quantum scattering, the mobility is accurate.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Stefaniki,K.Somoila and H.Nakamura: "Divergence of the Classical S-matrix Formula in Irregular Scattering" Reports on Mathematical Physics. 38. 399-418 (1996)
K.Stefaniki、K.Somoila 和 H.Nakamura:“不规则散射中经典 S 矩阵公式的散度”数学物理报告。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

染田 清彦其他文献

染田 清彦的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('染田 清彦', 18)}}的其他基金

分子の光誘起状態の生成条件と性質の解明
阐明分子光诱导态的形成条件和性质
  • 批准号:
    14077207
  • 财政年份:
    2002
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
遷移状態理論の量子力学的基礎付けと一般化
量子力学基础与过渡态理论的推广
  • 批准号:
    04740264
  • 财政年份:
    1992
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

赤外自由電子レーザーを利用した振動前期解離過程に関する研究
红外自由电子激光振动早期解离过程研究
  • 批准号:
    17750019
  • 财政年份:
    2005
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
レーザ誘起前期解離蛍光法による超音波空気流の可視化と計測
使用激光诱导早期解离荧光方法可视化和测量超声气流
  • 批准号:
    07650198
  • 财政年份:
    1995
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
ドプラーフリー高分解能レーザー分光による前期解離過程に関する研究
利用无多普勒高分辨率激光光谱研究早期解离过程
  • 批准号:
    06740448
  • 财政年份:
    1994
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ファンデルワールス・ヘテロニ量体の振動前期解離生成物の振動分布の測定
范德华异二聚体振动早期解离产物的振动分布的测量
  • 批准号:
    01740274
  • 财政年份:
    1989
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
励起分子の前期解離と非断熱相互作用のダイナミックス
激发分子的早期解离和非绝热相互作用的动力学
  • 批准号:
    63606510
  • 财政年份:
    1988
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
励起分子の前期解離と非断熱相互作用のダイナミックス
激发分子的早期解离和非绝热相互作用的动力学
  • 批准号:
    62606517
  • 财政年份:
    1987
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
光解離, 前期解離に対する磁場効果と励起分子・原子のダイナミックス
光解离、磁场对激发分子和原子的早期解离和动力学的影响
  • 批准号:
    58490020
  • 财政年份:
    1983
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
ベンゼン誘導体の前期解離
苯衍生物的早期解离
  • 批准号:
    X00090----154119
  • 财政年份:
    1976
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了