Quantum Chemical Molecular Representations for Machine Learning
机器学习的量子化学分子表示
基本信息
- 批准号:497190956
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to develop new molecular representations for machine learning (ML) based on efficient tight-binding (TB) quantum chemistry ('quantum features') and to connect those representations to various new network architectures. The models will be applied to predict chemically relevant properties of pharmaceutical-type molecules, like conformational and tautomerization energies, pKa values, solubility or partition coefficients. It is a project of a world-wide leading theoretical chemistry group for the development and application of simplified quantum chemical (QC) methods with strong support from the science and technology company Merck with established competence in leveraging extensive chemical data. For computing the quantum features, a new model Hamiltonian (ShellQ) in an extended AO basis set (vDZP) will be developed that is able to reproduce accurately various properties (atomic charge, shell population, bond order, dipole moment, polarizability) from a reference DFT calculation and is still generally applicable to the whole periodic table including organometallic systems. It accounts for the first time in a semiempirical context for fundamental physical effects like orbital contraction and electronic polarization. It is combined with established continuum solvation theories to model solvated molecules. Further main aspects of the proposal are the optimization of the neural network architecture based on ShellQ features, development of feature representation, the automatized generation of molecular training data sets, and state-of-the-art multitask-learning inspired from image recognition algorithms. In general, we follow a Delta-ML strategy where a correction term to a fast QC calculation (typically the established GFN-xTB or GFN-FF methods) based on the available features is computed by the network. This entire approach is supposed to provide efficiency and accuracy for a potentially wide range of chemical properties.
该项目旨在基于高效的紧束缚(TB)量子化学(“量子特征”)为机器学习(ML)开发新的分子表示,并将这些表示连接到各种新的网络架构。这些模型将被应用于预测药物型分子的化学相关性质,如构象和互变异构能,pKa值,溶解度或分配系数。这是一个全球领先的理论化学小组的项目,旨在开发和应用简化的量子化学(QC)方法,并得到了在利用广泛化学数据方面拥有成熟能力的科技公司默克的大力支持。为了计算量子特征,将开发扩展AO基组(vDZP)中的新模型哈密顿量(ShellQ),其能够从参考DFT计算准确地再现各种性质(原子电荷、壳层布居、键级、偶极矩、极化率),并且仍然普遍适用于整个周期表,包括有机金属系统。它第一次在半经验的背景下解释了基本的物理效应,如轨道收缩和电子极化。它与已建立的连续溶剂化理论相结合来模拟溶剂化分子。该提案的其他主要方面是基于ShellQ特征的神经网络架构的优化,特征表示的开发,分子训练数据集的自动化生成,以及从图像识别算法中获得灵感的最先进的多任务学习。一般来说,我们遵循Delta-ML策略,其中基于可用特征的快速QC计算(通常是已建立的GFN-xTB或GFN-FF方法)的校正项由网络计算。整个方法应该为潜在的广泛的化学性质提供效率和准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Stefan Grimme其他文献
Professor Dr. Stefan Grimme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Stefan Grimme', 18)}}的其他基金
Theoretical studies of nonlinear optical properties of fluorescent proteins by novel low-cost quantum chemistry methods
通过新型低成本量子化学方法对荧光蛋白非线性光学性质的理论研究
- 批准号:
450959503 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Control and quantification of interchromophoric coupling in single-molecule defined shape-persistent oligomers
单分子限定形状持久低聚物中发色团间偶联的控制和定量
- 批准号:
319559986 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Modeling of London Dispersion Interactions in Molecular Chemistry
分子化学中伦敦分散相互作用的建模
- 批准号:
271251207 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
First Principles Calculation of Electron Impact Mass Spectrometry of Molecules
分子电子轰击质谱第一原理计算
- 批准号:
253235332 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Quantum mechanical investigations of the thermodynamic and kinetic properties of H2-activating chemical systems with accurate first-principles wave-function and density based computational methods
使用精确的第一原理波函数和基于密度的计算方法对 H2 活化化学系统的热力学和动力学性质进行量子力学研究
- 批准号:
153069439 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Units
NSF-DFG Echem: Synergistic Experimental and Computational Approaches to Designing Electrocatalysts with Proton-Responsive Ligand Architecture
NSF-DFG Echem:设计具有质子响应配体结构的电催化剂的协同实验和计算方法
- 批准号:
460468997 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Main Group Metal Mediated Hydrogenation Reactions and Catalysis
主族金属介导的氢化反应和催化
- 批准号:
490737079 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: New Classical and Quantum Algorithms for Quantum Dynamics of Molecular Collisions and Chemical Reactions at Ultralow Temperatures
职业:超低温下分子碰撞和化学反应的量子动力学的新经典和量子算法
- 批准号:
2045681 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Quantitative analysis of quantum beam induced initial/primary chemical reactions relating to biological molecular damage
量子束诱导的与生物分子损伤相关的初始/初级化学反应的定量分析
- 批准号:
18K07739 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Water Tree Suppressing Effect of Surfactant by Quantum Chemical Calculation and Molecular Dynamics Simulation
量子化学计算和分子动力学模拟分析表面活性剂的水树抑制效果
- 批准号:
18K05244 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the dynamic factors promoting the chemical reaction by combining the quantum mechanical and the molecular dynamics methods
量子力学与分子动力学相结合分析促进化学反应的动力因素
- 批准号:
17K05766 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accurate quantum-chemical calculations of electro-magnetic molecular properties including electron-correlation and QED
电磁分子特性的精确量子化学计算,包括电子相关和 QED
- 批准号:
17H03011 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigating the Effect of Chemical Species on Pellet Cladding Interaction in Pressurised Water Reactor Fuel using Hybrid Quantum Mechanics Molecular
使用混合量子力学分子研究化学物质对压水堆燃料中球团包壳相互作用的影响
- 批准号:
1857821 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Studentship
Development of animation teaching materials for molecular interactions and chemical reactions based on the quantum chemical calculations
基于量子化学计算的分子相互作用与化学反应动画教材开发
- 批准号:
15K17409 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Approach to surface chemical transition state using quantum state controlled molecular beam
利用量子态控制分子束研究表面化学过渡态
- 批准号:
15KT0062 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theoretical design of molecular devices using metal complexes and theoretical prediction of their properties by quantum chemical calculations
使用金属配合物的分子器件的理论设计及其通过量子化学计算的性质的理论预测
- 批准号:
26410093 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum-chemical study on molecular properties in strong magnetic field of 1000T
1000T强磁场中分子性质的量子化学研究
- 批准号:
26620012 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research














{{item.name}}会员




