Inference of Genetic Interactions in Large Scale Genetic Network

大规模遗传网络中遗传相互作用的推断

基本信息

  • 批准号:
    12208008
  • 负责人:
  • 金额:
    $ 62.14万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2004
  • 项目状态:
    已结题

项目摘要

The expression profiles of hundreds and thousands of genes on a genomic scale can be measured simultaneously by recent powerful technologies such as DNA microarrays, DNA chips and so forth. These observed data depending on its environment are usually obtained as snapshots, but can be generated as dense time series that indicate the dynamic behavior. The experimentally observed time-course data should contain enormous information about the regulation of genetic networks in vivo. However, since this information is entirely implicit, it requires adequate analytical and computational methods of retrieval and interpretation. This inference problem of genetic networks by using the experimentally observed time-course data is generally referred to as "inverse problem" and can be defined as function optimization of the values of parameters involved in a suitable model representation of genetic network. The key points to solve such an inverse problem are how to set up canonical representation of … More mathematical modeling of genetic network and how to explore and exploit the values of parameters within immense huge searching space, we had first proposed a novel inferring method of genetic network by combining a dynamic network model called S-system with a computational technique of parameter estimation based on real-coded genetic algorithms (RCGAs). Using S-system modeling and RCGAs with the combination of the UNDX (unimodal normal distribution crossover) and MGG (minmal generation gap), we proposed efficient procedures for the inference of genetic interactions from the experimentally observed time-course data of system components (mRNA). By improving the searching algorithm and by introducing server-client system, we have developed the novel inferring system which can be finding a lots of possibly network candidates that can realize the given experimentally observed time-course data. All of these network candidates can realize the same experimentally observed facts, however, the structures of genetic interactions are different each other. Therefore, we have proposed the analytical method for extracting useful information from many network candidates of. gene expression. In S-system model, the sign of interrelated coefficient shows the kind of interactions such as activation, inhibition, or no relation. The common core interactions are defined by the interactions with sign of which are same among all network candidates of gene expression which inferred based on the same experimentally observed time-course data under the same parameter optimizing conditions. We calculated sensitivity for each interaction included in the network candidates, and compared sensitivity of common core interactions with that of other unique interactions. Less
近年来,DNA微阵列、DNA芯片等技术的发展,使基因组规模上的成百上千个基因的表达谱可以同时测定。这些观察到的数据取决于它的环境,通常是作为快照获得的,但可以生成密集的时间序列,指示动态行为。实验观察到的时间过程数据应该包含大量的信息,在体内的遗传网络的调节。然而,由于这一信息是完全隐含的,它需要适当的分析和计算方法的检索和解释。遗传网络的这种利用实验观察到的时间过程数据的推理问题通常被称为“逆问题”,并且可以被定义为遗传网络的合适模型表示中所涉及的参数值的函数优化。求解这类反问题的关键是如何建立正则表达式, ...更多信息 为了解决遗传网络的数学建模问题以及如何在巨大的搜索空间中探索和利用参数值的问题,首次提出了一种将S-系统动态网络模型与基于实数编码遗传算法(RCGAs)的参数估计计算技术相结合的遗传网络推理方法。使用S-系统建模和RCGAs与UNDX(单峰正态分布交叉)和MGG(最小代沟)的组合,我们提出了有效的程序推理的遗传相互作用的实验观察到的时间过程数据的系统组件(mRNA)。通过改进搜索算法和引入服务器-客户端系统,我们开发了一个新的推理系统,它可以找到大量的可能的网络候选人,可以实现给定的实验观察到的时间过程数据。所有这些网络候选者都能实现相同的实验观察事实,然而,遗传相互作用的结构彼此不同。因此,我们提出了一种分析方法,用于从许多网络候选者中提取有用的信息。基因表达。在S系统模型中,相关系数的符号表示相互作用的类型,如激活、抑制或不相关。共同核心相互作用定义为在相同的参数优化条件下,基于相同的实验观察的时间过程数据推断的基因表达的所有网络候选者之间具有相同符号的相互作用。我们计算了候选网络中每个交互的敏感度,并将共同核心交互的敏感度与其他独特交互的敏感度进行了比较。少

项目成果

期刊论文数量(70)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
岡本正宏: "S-systemによる遺伝子ネットワークモデリング(「バイオプロセスシステムエンジニアリング](清水浩編集)pp. 41-52)"シーエムシー出版. 309 (2002)
Masahiro Okamoto:“使用 S-system 进行基因网络建模(‘生物过程系统工程’(由 Hiroshi Shimizu 编辑)第 41-52 页)”CMC Publishing 309(2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Morishita, R.et al.: "Finding Multiple Solutions Based on An Evolutionary Algorithm for Inference of Genetic Networks by S-system"Proc.2003 Congress on Evolutionary Computation (CEC2003). 615-622 (2003)
Morishita, R.等人:“基于 S 系统推理遗传网络的进化算法寻找多种解决方案”Proc.2003 年进化计算大会 (CEC2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A grid-Oriented Genetic Algorithm Framework for Bioinformatics
面向网格的生物信息学遗传算法框架
Maki, Y. et al.: "Inference of Genetic Network Using the Expression Profile Time Course Data of Mouse P19 Cells"Genome Informatics. 13. 382-383 (2002)
Maki, Y. 等人:“使用小鼠 P19 细胞的表达谱时程数据推断遗传网络”基因组信息学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKAMOTO Masahiro其他文献

OKAMOTO Masahiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKAMOTO Masahiro', 18)}}的其他基金

The effect of exercise to overcome stress and depression: Elucidation of a hippocampal molecular mechanism using RNA-Seq
运动对克服压力和抑郁的作用:利用 RNA-Seq 阐明海马分子机制
  • 批准号:
    16K16559
  • 财政年份:
    2016
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Impacts on political activity of non-profit organizations caused by Public Interest Corporation System Reform and comparative analysis of regulation systems
公益法人体制改革对非营利组织政治活动的影响及规制制度比较分析
  • 批准号:
    26380199
  • 财政年份:
    2014
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of Bio-inspired Algorithm to Adaptive Routing of Packets and to Traffic Congestion of Roads
仿生算法在数据包自适应路由和道路交通拥堵中的应用
  • 批准号:
    21310109
  • 财政年份:
    2009
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Humanity, Nationality and Citizenship : Civil Society, Nationalism, Globalism and New Political Theories
人性、民族性和公民身份:公民社会、民族主义、全球主义和新政治理论
  • 批准号:
    20330029
  • 财政年份:
    2008
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bio-inspired Algorithm of Traffic Engineering: Application to Adaptive Routing of Packets
流量工程仿生算法:在数据包自适应路由中的应用
  • 批准号:
    19300020
  • 财政年份:
    2007
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design of biologically inspired distributed adaptive routing system
仿生分布式自适应路由系统设计
  • 批准号:
    16310117
  • 财政年份:
    2004
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Automatic Derivation of Nonlinear State Equations by Using Artificial Intelligence in Inverse Problem of Complex Systems
复杂系统反问题中人工智能自动推导非线性状态方程
  • 批准号:
    13680449
  • 财政年份:
    2001
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Recognition of shape-changes in 3D-objects by GRBF network
通过 GRBF 网络识别 3D 对象的形状变化
  • 批准号:
    10680387
  • 财政年份:
    1998
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of Intelligent Network Topology by Mimicking the Fault-tolerant Network Structure of Metabolic Pathways
通过模仿代谢途径的容错网络结构来研究智能网络拓扑
  • 批准号:
    10555128
  • 财政年份:
    1998
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似海外基金

Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
  • 批准号:
    RGPIN-2018-04028
  • 财政年份:
    2022
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Optimization, Formulations and Algorithms, for Machine Learning
用于机器学习的数值优化、公式和算法
  • 批准号:
    RGPIN-2019-04067
  • 财政年份:
    2022
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Optimization and Machine Learning
数值优化和机器学习
  • 批准号:
    544900-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Alliance Grants
Clustering and semi-supervised learning on large heterogeneous graphs: Mathematical formulations and numerical optimization algorithms
大型异构图上的聚类和半监督学习:数学公式和数值优化算法
  • 批准号:
    569398-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Numerical Optimization of Richardson-Gaudin Wavefunctions
Richardson-Gaudin 波函数的数值优化
  • 批准号:
    562836-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 62.14万
  • 项目类别:
    University Undergraduate Student Research Awards
Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
  • 批准号:
    RGPIN-2018-04028
  • 财政年份:
    2021
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Optimization, Formulations and Algorithms, for Machine Learning
用于机器学习的数值优化、公式和算法
  • 批准号:
    RGPIN-2019-04067
  • 财政年份:
    2021
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Optimization and Machine Learning
数值优化和机器学习
  • 批准号:
    544900-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Alliance Grants
Numerical Optimization, Formulations and Algorithms, for Machine Learning
用于机器学习的数值优化、公式和算法
  • 批准号:
    RGPIN-2019-04067
  • 财政年份:
    2020
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Optimization and Machine Learning
数值优化和机器学习
  • 批准号:
    544900-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 62.14万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了