Creation of Novel Ion Conducting Membrane by Nano-Micro Structural Control

通过纳米微结构控制创建新型离子导电膜

基本信息

  • 批准号:
    13134204
  • 负责人:
  • 金额:
    $ 78.02万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2005
  • 项目状态:
    已结题

项目摘要

Novel proton conducting membranes composed of proton conducting polymers and porous matrices were prepared for direct methanol fuel cells (DMFCs). As the matrix for the composite membrane, a three-dimensionally ordered macroporous (3DOM) membrane with adequate mechanical strength was successfully obtained by use of silica or polyimide. Due to mechanical suppression of polymer expansion by the matrix, the composite membrane exhibited high dimensional stability. As a result, the methanol permeability less than a few tenths of that of Nafion【○!R】 membrane and high cell performance by feeding a desired high-concentrated methanol solution (10 mol dm-3) were successfully achieved for the first time ever. The components of the composite membrane were inexpensive, so that the production cost could be also decreased less than a few tenths of that of Nafion【○!R】 membrane. The filling state of the polymer electrolyte in the composite membrane was revealed by transmission electron microscope obser … More vation, which was conducted as a joint study with Group D01. Therefore, the relationship between the nano-structure of the composite membrane and the resulting properties became clear and the membrane properties could be improved. As another type of the electrolyte membrane, the 3DOM silica matrix filled with a novel room-temperature molten salt that was synthesized by Group C01, was evaluated. The obtained composite membrane worked stably over 100 h under dry and high-temperature condition, suggesting the realization of high temperature DMFC for electric vehicles.Researches for improving cell performance were also conducted. It was appeared that the quality between the membrane and a catalyst layer greatly influenced the cell performance by A.C. impedance measurement. As one of solutions, we performed a surface modification of the 3DOM silica by sulfonic acid groups, and the cell performance was successfully enhanced. Application of electrophoretic deposition (EPD) process to fabricate a catalyst layer onto the membrane was also studied as another method. The obtained catalyst layer by the EPD process was uniform and porous compared to that prepared by an ordinary method, i.e. a decal transfer process. This structure was favorable to gas diffusion, resulting in improvement of Pt utilization up to 76%. Accordingly, the MEA prepared by the EPD process exhibited higher cell performance with half amount of Pt loadings compared to the ordinary one. The latter process has been introduced all over the world by Electrochemical Society as Technical highlight and has attracted much attention. Less
制备了用于直接甲醇燃料电池(DMFC)的新型质子传导膜,该膜由质子传导聚合物和多孔基体组成。作为复合膜的基体,通过使用二氧化硅或聚酰亚胺成功地获得了具有足够机械强度的三维有序大孔(3DOM)膜。由于基质对聚合物膨胀的机械抑制,复合膜表现出高的尺寸稳定性。结果,甲醇渗透率小于Nafion[○!R]膜和通过进料所需的高浓度甲醇溶液(10 mol dm-3)的高电池性能首次成功实现。该复合膜的组分便宜,因此生产成本也可以降低不到Nafion的十分之几!R]膜。用透射电镜观察了聚合物电解质在复合膜中的填充状态 ...更多信息 与D 01组进行联合研究。因此,复合膜的纳米结构与所得性能之间的关系变得清晰,并且可以改善膜的性能。作为另一种类型的电解质膜,评价了填充有由Group C 01合成的新型室温熔融盐的3DOM二氧化硅基质。该复合膜在干燥高温条件下稳定运行100 h以上,有望实现电动汽车用高温直接甲醇燃料电池,并对提高电池性能进行了研究。结果表明,膜和催化剂层之间的质量极大地影响了电池的性能。阻抗测量作为解决方案之一,我们通过磺酸基团对3DOM二氧化硅进行表面改性,并且成功地提高了电池性能。作为另一种方法,还研究了电泳沉积(EPD)工艺在膜上制备催化剂层的应用。与通过普通方法即贴花转印法制备的催化剂层相比,通过EPD法获得的催化剂层是均匀和多孔的。这种结构有利于气体的扩散,使Pt的利用率提高到76%。因此,与普通MEA相比,通过EPD工艺制备的MEA在Pt负载量为一半的情况下表现出更高的电池性能。后一种方法已被电化学学会作为技术亮点介绍到世界各地,引起了人们的广泛关注。少

项目成果

期刊论文数量(96)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effect of pore surface modification of an inorganic substrate on the plasma grafting behavior of pore-filling-type organic/inorganic composite membranes
无机基质孔表面改性对孔填充型有机/无机复合膜等离子体接枝行为的影响
三次元規則配列多孔体へのプロトン伝導性付与の研究
三维规则排列多孔材料赋予质子导电性的研究
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toshiyuki Momma;et al.;金村聖志
  • 通讯作者:
    金村聖志
燃料電池
燃料电池
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Properties of composite proton-conducting membranes prepared from three-dimensionally ordered macroporous polyimide matrix and polyelectrolyte.
  • DOI:
    10.1039/b505843k
  • 发表时间:
    2005-07
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    H. Munakata;D. Yamamoto;K. Kanamura
  • 通讯作者:
    H. Munakata;D. Yamamoto;K. Kanamura
金村 聖志: "原子の針を用いた実材料表面のその場観察"表面. 39・10. 39-48 (2001)
Kiyoshi Kanemura:“使用原子针对真实材料表面进行原位观察”Surface 39・10(2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KANAMURA Kiyoshi其他文献

シリカ-希土類リン酸塩透明結晶化ガラスの液相合成と無濃度消光緑色・紫外発光
二氧化硅-稀土磷酸盐透明微晶玻璃的液相合成及无浓缩淬火绿光/紫外发射
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KAJIHARA Koichi;HIRUTA Keiichi;KANAMURA Kiyoshi;梶原 浩一
  • 通讯作者:
    梶原 浩一
Cosolvent-free sol–gel dip-coating of silica films from tetraalkoxysilane–water binary systems: precursor solutions of long pot life and their characterization by nuclear magnetic resonance spectroscopy
四烷氧基硅烷-水二元体系二氧化硅薄膜的无共溶剂溶胶-凝胶浸涂:长适用期的前体溶液及其核磁共振波谱表征
  • DOI:
    10.2109/jcersj2.20150
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    KAJIHARA Koichi;HIRUTA Keiichi;KANAMURA Kiyoshi
  • 通讯作者:
    KANAMURA Kiyoshi
ゾル-ゲル法によるガラス合成
溶胶凝胶法合成玻璃
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KAJIHARA Koichi;HIRUTA Keiichi;KANAMURA Kiyoshi;梶原 浩一;梶原 浩一
  • 通讯作者:
    梶原 浩一

KANAMURA Kiyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KANAMURA Kiyoshi', 18)}}的其他基金

Novel Architecture on All Solid State Microbattery System
全固态微电池系统的新颖架构
  • 批准号:
    14205097
  • 财政年份:
    2002
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Dynamic Observation of Molecular Movement at Interface Between Electrode and Solid Polymer Electrolyte by Using In Situ FTIR Spectroscopy
利用原位 FTIR 光谱动态观察电极与固体聚合物电解质界面处的分子运动
  • 批准号:
    08455394
  • 财政年份:
    1996
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Surface State Control of Lithium for Highly Smooth Electrodeposition
用于高度平滑电沉积的锂表面状态控制
  • 批准号:
    07555575
  • 财政年份:
    1995
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Structural and Electronic State Changes of Spinel Oxides During Lithium Insertion and Extraction
锂嵌入和脱嵌过程中尖晶石氧化物的结构和电子态变化
  • 批准号:
    06650745
  • 财政年份:
    1994
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Continuing Grant
Solar-powered methanol conversion for on-demand hydrogen production
太阳能甲醇转化用于按需制氢
  • 批准号:
    DE240100810
  • 财政年份:
    2024
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Discovery Early Career Researcher Award
Solar driven methane conversion for green methanol production
太阳能驱动的甲烷转化用于绿色甲醇生产
  • 批准号:
    FT230100251
  • 财政年份:
    2024
  • 资助金额:
    $ 78.02万
  • 项目类别:
    ARC Future Fellowships
Single-site Zn+ on CuFe clusters for the selective oxidation of methane to methanol
CuFe 簇上的单点 Zn 用于甲烷选择性氧化为甲醇
  • 批准号:
    EP/X021734/1
  • 财政年份:
    2023
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Fellowship
Bio-methanol Manufacturing Using Farming Biogas By-Products
利用农业沼气副产品生产生物甲醇
  • 批准号:
    10079001
  • 财政年份:
    2023
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Collaborative R&D
Exsolved catalysts for the conversion of CO2 to methanol
用于将 CO2 转化为甲醇的溶解催化剂
  • 批准号:
    2895223
  • 财政年份:
    2023
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Studentship
Photoelectrode design for solar driven methane to methanol conversion
太阳能驱动甲烷转化为甲醇的光电极设计
  • 批准号:
    DP230100621
  • 财政年份:
    2023
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Discovery Projects
Methanol production by CO2 hydrogenation using multinuclear catalyst under mild conditions
温和条件下多核催化剂CO2加氢生产甲醇
  • 批准号:
    23H00315
  • 财政年份:
    2023
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Bifunctionality of Intermetallic Pd-In/Indium-Oxide Catalysts for CO2 Hydrogenation to Methanol
CO2 加氢制甲醇金属间化合物 Pd-In/Ind-Oxide 催化剂的双功能
  • 批准号:
    2323274
  • 财政年份:
    2023
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Standard Grant
High horsepower methanol vessel retrofit
大马力甲醇船改造
  • 批准号:
    10076384
  • 财政年份:
    2023
  • 资助金额:
    $ 78.02万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了