Advancement and Application of TDDFT-based Non-Adiabatic Molecular Dynamics Methods for Triplet States

基于TDDFT的三重态非绝热分子动力学方法的进展及应用

基本信息

  • 批准号:
    501114520
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    WBP Fellowship
  • 财政年份:
  • 资助国家:
    德国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Non-adiabatic molecular dynamics (NAMD) simulations are an important theoretical tool to study ultrafast light-induced processes occurring on a femtosecond time scale. Previous research has been predominantly focused on processes in which the electronic transitions involve no change in electron spin (singlet excitations and internal conversion). Processes involving spin reversal (triplet excitations and intersystem crossing, ISC) typically proceed on a much longer time scale. However, important exceptions to this rule are increasingly found, such as ultrafast ISC processes in transition-metal complexes, which are relevant for the development of dye-sensitized solar cells or OLEDs. However, the consideration of triplet states in NAMD simulations also introduces various problems, some of which will be addressed in this project.For larger systems, time-dependent density functional theory (TDDFT) is a popular method for calculating the quantum chemical quantities needed for NAMD simulations, as it offers an attractive cost-performance ratio. However, conventional density functionals exhibit large errors for triplet excitation energies, which can lead to incorrect results in NAMD simulations. The relatively recent class of local hybrid functionals, on the other hand, offers significant advantages in describing triplet states, so a first goal is to develop non-adiabatic coupling matrix elements for these functionals to make them available for NAMD simulations.To describe ISC in NAMD simulations, the underlying spin-orbit coupling (SOC) effect must be described. For efficiency and simplicity, this is usually done using perturbative approaches. However, for strong couplings, such as those expected in complexes with heavy elements, these approaches may fail. The second goal of this project is to instead use variational, two-component TDDFT methods that are more reliable for strong couplings to determine SOC matrix elements in NAMD simulations.For the calculation of the forces governing the motion of atomic nuclei in NAMD simulations, the nuclear gradients of the excited states are needed. However, contemporary NAMD methods neglect the gradients of the SOC terms because they are not yet analytically computable by any quantum chemical program. The third goal of this project is to derive and implement these gradients in the framework of two-component TDDFT.The new methods will be used to explore ISC processes in molecules that are highly relevant in the context of solar energy harvesting but have so far only been studied using simpler approaches or not at all. The accuracy of the different methods will also be compared in this context.
非绝热分子动力学(NAMD)模拟是研究飞秒时间尺度上超快光诱导过程的重要理论工具。以前的研究主要集中在电子跃迁不涉及电子自旋变化的过程(单重态激发和内转换)。涉及自旋反转的过程(三重激发和系间穿越,ISC)通常在更长的时间尺度上进行。然而,越来越多地发现这一规则的重要例外,例如过渡金属络合物中的超快ISC过程,这与染料敏化太阳能电池或OLED的开发有关。然而,在NAMD模拟中考虑三重态也带来了各种问题,其中一些问题将在本项目中解决。对于较大的系统,含时密度泛函理论(TDDFT)是计算NAMD模拟所需量子化学量的流行方法,因为它提供了有吸引力的性价比。然而,传统的密度泛函表现出较大的误差三重态激发能,这可能会导致不正确的结果NAMD模拟。另一方面,相对较新的一类局域杂化泛函在描述三重态方面具有显著的优势,因此第一个目标是为这些泛函开发非绝热耦合矩阵元,使其可用于NAMD模拟。为了效率和简单,这通常使用微扰方法来完成。然而,对于强耦合,例如在与重元素的配合物中预期的那些,这些方法可能失败。本文的第二个目标是在NAMD模拟中,采用对强耦合更为可靠的变分双分量TDDFT方法来确定SOC矩阵元。在NAMD模拟中,为了计算控制原子核运动的力,需要计算激发态的核梯度。然而,当代NAMD方法忽略了SOC项的梯度,因为它们还不能通过任何量子化学程序进行分析计算。该项目的第三个目标是在双组分TDDFT的框架下推导和实现这些梯度。新方法将用于探索在太阳能收集背景下高度相关的分子中的ISC过程,但到目前为止只使用更简单的方法进行了研究或根本没有。在这方面,还将比较不同方法的准确性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Robin Grotjahn其他文献

Dr. Robin Grotjahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Sustainable solution for cooling application
冷却应用的可持续解决方案
  • 批准号:
    10089491
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Wearable Electronic Skins for Biomedical Application
用于生物医学应用的可穿戴电子皮肤
  • 批准号:
    2906949
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
  • 批准号:
    2227366
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了