Investigation of photocatalytic and photothermocatalytic ammonia production from molecular nitrogen and water under elevated temperature and pressure conditions
高温高压条件下分子氮和水光催化和光热催化制氨的研究
基本信息
- 批准号:502146784
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ammonia is one of the most important chemical commodities. However, its production is also associated with up to two percent of the worldwide CO2 emissions. The photocatalytic reduction of molecular nitrogen and simultaneous oxidation of water to dioxygen is an interesting approach to achieve a sustainable NH3 production. However, there is currently a profound lack of fundamental knowledge of the influence of the various reaction parameters on both the reaction mechanism and rate - a gap the present proposal aims to fill.As a first step we will study how temperature influences the reaction. While certainly, the energy required for the photocatalytic reaction is supplied by the high-energy photons, we have recently seen that elevated reaction temperatures positively influence the kinetics of photocatalytic reactions and can help to significantly increase the efficiency of the conversion. In this regard, our own preliminary study already hints at tremendous potential also for the reduction of N2 to NH3. Starting from there, we will further systematically investigate this temperature effect. The next unanswered question is whether the availability of nitrogen at the catalyst is a limiting factor for both the selectivity towards NH3 and the overall observed reaction rate. To study this, we will investigate the effect of the employed nitrogen partial pressure which directly increases the amount of N2 dissolved in the aqueous system.Particularly under these conditions of elevated temperature and pressure, the observed ammonia generation rate may not be exclusively from direct photocatalytic reduction of N2 but may be superimposed by photocatalytic and/or thermal “Haber-Bosch” reactions, i.e., the formation of ammonia from the elements, fueled by H2 generated as a byproduct from water reduction. We will therefore study in depth under which conditions these reactions occur and what contributions they have to the overall observed reaction rate. This knowledge will be critical in a knowledge-driven catalyst design as it determines for example if the (photo)catalysts need to suppress H2 evolution or not.As photocatalyst materials, we will systematically explore bismuth oxyhalides as they are currently the most promising material class for this reaction. Nonetheless, there is no systematic study on this material class as of yet regarding synthesis routes, materials and performance properties. By varying the compositions of the halide in the material as well as the particle morphology and size we will first find the most suitable candidate as photocatalyst through an initial screening. We will also study if these materials are sufficiently stable within the whole range of intensified reaction conditions planned herein. Then, by analyzing the reaction rate response of the catalysts towards varying experimental conditions, we will be able to calculate fundamental optoelectronic and catalytic properties based on a detailed kinetic model.
氨是最重要的化工产品之一。然而,它的生产也与全球二氧化碳排放量的2%有关。分子氮的光催化还原和同时水氧化成分子氧是实现可持续的NH3生产的有趣方法。然而,目前对各种反应参数对反应机理和反应速率的影响的基础知识还非常缺乏--本提案旨在填补这一空白。作为第一步,我们将研究温度如何影响反应。当然,光催化反应所需的能量是由高能光子提供的,我们最近看到,升高的反应温度对光催化反应的动力学有积极的影响,并有助于显着提高转化效率。在这方面,我们自己的初步研究已经暗示了将N2还原为NH3的巨大潜力。从那里开始,我们将进一步系统地研究这种温度效应。下一个未回答的问题是催化剂处氮的可用性是否是对NH3的选择性和总体观察到的反应速率的限制因素。为了研究这一点,我们将研究直接增加溶解在含水系统中的N2的量的所采用的氮分压的影响。特别是在这些升高的温度和压力的条件下,观察到的氨生成速率可能不完全来自N2的直接光催化还原,而是可能被光催化和/或热“Haber-Bosch”反应叠加,即,由元素形成氨,由水还原产生的副产物H2作为燃料。因此,我们将深入研究这些反应发生的条件以及它们对观察到的总反应速率的贡献。这些知识在知识驱动的催化剂设计中至关重要,因为它决定了(光)催化剂是否需要抑制H2的释放。作为光催化剂材料,我们将系统地探索卤氧化铋,因为它们是目前最有前途的材料类别。尽管如此,目前还没有对这类材料的合成路线、材料和性能进行系统研究。通过改变材料中卤化物的组成以及颗粒的形态和尺寸,我们将首先通过初步筛选找到最适合作为光催化剂的候选物。我们还将研究这些材料在本文计划的整个强化反应条件范围内是否足够稳定。然后,通过分析催化剂对不同实验条件的反应速率响应,我们将能够基于详细的动力学模型计算基本的光电和催化性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Jonathan Bloh其他文献
Dr. Jonathan Bloh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Jonathan Bloh', 18)}}的其他基金
Powering photoreactions with inductively coupled wireless light emitters located inside the reaction medium
使用位于反应介质内的电感耦合无线光发射器为光反应提供动力
- 批准号:
419142041 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Photoenzymatic cascade reactions: Coupling photocatalytic in-situ generation of hydrogen peroxide with peroxidase-based enzymatic reactions
光酶级联反应:将光催化原位产生过氧化氢与基于过氧化物酶的酶促反应耦合
- 批准号:
277634680 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
BOOSTING SEMICONDUCTORS: FOR PHOTOCATALYTIC WATER TREATMENT (BO-SE)
升压半导体:用于光催化水处理 (BO-SE)
- 批准号:
EP/Y003063/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Photocatalytic Radical Polar Crossover for C-H, C-O, and C-C Functionalization
用于 C-H、C-O 和 C-C 官能化的光催化自由基极性交叉
- 批准号:
2349315 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
EAGER: Understanding Photocatalytic Reduction-Enabled Continuous Nucleation of Multimetallic Nanoparticles
EAGER:了解多金属纳米粒子的光催化还原连续成核
- 批准号:
2325247 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Photocatalytic Transfer Hydrogenation of CO2 Using Transition Metal Cluster Arrays
职业:使用过渡金属簇阵列进行二氧化碳光催化转移氢化
- 批准号:
2237345 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
RUI: Photocatalytic Protein-Catalyst Hybrids to Perform Solar Carbon Dioxide Reduction to Carbon-Based Fuels or Chemicals
RUI:光催化蛋白质催化剂混合体可将太阳能二氧化碳还原为碳基燃料或化学品
- 批准号:
2247052 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Photocatalytic upgrading of waste water to potable water and green hydrogen project
废水光催化提质饮用水及绿氢项目
- 批准号:
2878187 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Automated Flow Synthesis: In-Line Reaction Monitoring and Machine Learning for the Optimisation of Continuous Flow Photocatalytic Reactions
自动流动合成:用于优化连续流动光催化反应的在线反应监测和机器学习
- 批准号:
2894726 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Intracellular reaction control of photocatalytic proximity labeling and target identification of bioacitive molecules
光催化邻近标记的细胞内反应控制和生物活性分子的靶标识别
- 批准号:
23H02099 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Proposal of design guidelines for improving CO2 reduction selectivity in photocatalytic CO2 reduction with water as an electron source
提高以水为电子源的光催化 CO2 还原中 CO2 还原选择性的设计指南提案
- 批准号:
23K13779 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Metal-Organic Framework Acts as a Hydrogen Evolution Cocatalyst for Overall Photocatalytic Water Splitting
金属有机框架作为整体光催化水分解的析氢助催化剂
- 批准号:
23KJ1388 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




