Interaction of catalytic chemistry and transport inside and around porous catalyst pellets for CO2 methanation under enforced dynamic operation
强制动态操作下二氧化碳甲烷化的催化化学和多孔催化剂颗粒内部和周围传输的相互作用
基本信息
- 批准号:505369008
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Future production of fuels and chemicals will face fluctuating energy and raw materials supply. In process applications like power-to-X, catalytic reactors will more often be subjected to dynamic boundary conditions such as start-up, shutdown or load changes than current reactors running on fossil fuels and energy. The dynamic hydrogenation of carbon oxides to methane (methanation) is one such example for which catalytic reactors will have to be operated dynamically. A profound understanding of physical and chemical processes is needed on all relevant length and time scales in order to design this dynamic process properly. While much theoretical and experimental work has been devoted in the past to catalytic processes on the nano-scale (catalyst and active site dynamics) and on the macro-scale (reactor dynamics under transient conditions), comparably few studies focused on dynamic effects on the meso-scale (inter- and intraparticle dynamics). In particular, the interplay between diffusion and reaction inside a single catalytic pellet coupled with the surrounding flow field under enforced transient operation is poorly understood. Therefore, we hypothesize that only with a combined approach uniting detailed operando experiments and detailed CFD modeling, we are able to understand the dynamic methanation process on the pellet level. Based on these detailed single pellet insights, we can conclude on spatiotemporal patterns occurring in packed beds. We therefore study an isolated single pellet with defined dynamic feed conditions, both with experiments and with CFD models. With the capillary sampling technique, we quantify the dynamic local temperature and concentration profiles inside the pellet and in the boundary gas layer over a wide range of operating and perturbation conditions. In addition, IR thermography quantifies the surface temperature of the pellet. With this large data set, we develop and validate a transient single pellet CFD model coupling the surrounding gas flow with a three-dimensional reaction-diffusion model inside the pellet. Furthermore, the experimental and CFD setup is extended to an array of pellets mimicking a core section of a packed bed. This bridges our single pellet findings with industrially operating methanation fixed-bed reactors. Finally, we apply system identification tools to describe the dynamic pellet response under perturbation.
未来燃料和化学品的生产将面临能源和原材料供应的波动。在power-to-X等工艺应用中,与目前使用化石燃料和能源的反应器相比,催化反应器更容易受到动态边界条件的影响,例如启动、关闭或负载变化。碳氧化物的动态加氢生成甲烷(甲烷化)就是这样一个例子,催化反应器必须动态运行。为了正确地设计这一动态过程,需要对所有相关长度和时间尺度上的物理和化学过程有深刻的理解。虽然过去有许多理论和实验工作致力于纳米尺度(催化剂和活性位点动力学)和宏观尺度(瞬态条件下的反应器动力学)的催化过程,但相对而言,很少有研究关注中尺度(颗粒间和颗粒内动力学)的动力学效应。特别是,在强制瞬态操作下,单个催化球团内部与周围流场耦合的扩散和反应之间的相互作用知之甚少。因此,我们假设只有结合详细的操作实验和详细的CFD建模,我们才能在球团水平上理解动态甲烷化过程。基于这些详细的单颗粒见解,我们可以得出充填床中发生的时空模式。因此,我们通过实验和CFD模型研究了具有定义的动态进料条件的孤立单颗粒。利用毛细管采样技术,我们量化了在广泛的操作和扰动条件下球团内部和边界气层中的动态局部温度和浓度分布。此外,红外热像仪量化了颗粒的表面温度。利用这一庞大的数据集,我们开发并验证了一个瞬态单颗粒CFD模型,该模型将周围的气体流动与颗粒内部的三维反应扩散模型相耦合。此外,实验和CFD装置扩展到模拟填充床岩心部分的颗粒阵列。这将我们的单一颗粒发现与工业操作的甲烷化固定床反应器联系起来。最后,我们应用系统辨识工具来描述摄动下球团的动态响应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Raimund Horn其他文献
Professor Dr. Raimund Horn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Raimund Horn', 18)}}的其他基金
Interaction of Surface and Gas Reactions in High Temperature (max ca. 1300°C) High Pressure (max. ca. 5 M Pa) Catalytic Alkane Oxidations
高温(最高约 1300°C)高压(最高约 5 M Pa)下表面和气体反应的相互作用催化烷烃氧化
- 批准号:
66414231 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
相似国自然基金
二氧化碳与高碳烷烃耦合转化多相催化体系研究
- 批准号:22372180
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
复相催化“均相化”催化剂的制备及其性能研究
- 批准号:20573095
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Processivity and Catalytic Mechanism of Aldosterone Synthase
醛固酮合酶的持续合成能力和催化机制
- 批准号:
10600520 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Expanding the Catalytic Repertoire of Heme-based Dioxygenases
扩展血红素双加氧酶的催化能力
- 批准号:
10719622 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Catalytic Deuteration for Organodeuterium Chemistry
有机氘化学的催化氘化
- 批准号:
23H01958 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimizing Enhanced Hammerhead Ribozymes for Retinal Nucleic Acid Therapeutics
优化用于视网膜核酸治疗的增强型锤头核酶
- 批准号:
10638529 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Heme-, Redox-, and CO-dependent Regulation of Heme Homeostasis
血红素稳态的血红素、氧化还原和CO依赖性调节
- 批准号:
10660290 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The biochemical mechanism and pharmacological inhibition of phosphatidylinositol phosphate kinases
磷脂酰肌醇磷酸激酶的生化机制及药理抑制作用
- 批准号:
10711064 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Taking Snapshots of Enzymatic Reactions Using X-ray Crystallography and Spectroscopy
使用 X 射线晶体学和光谱学拍摄酶反应快照
- 批准号:
10623717 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A 3-year PhD studentship in organic systems chemistry and developing catalytic peptide ligation
有机系统化学和催化肽连接开发的 3 年博士生奖学金
- 批准号:
2724735 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




