Microscopic Mechanisms and Surface Adaptation Effects in Slide-Electrification

滑动带电的微观机制和表面适应效应

基本信息

项目摘要

Slide electrification describes a spontaneous charge separation between a moving liquid droplet and a hydrophobic surface. Depending on substrate material and liquid, the drop accumulates either positive or negative charge with the substrate charging oppositely. Here, the drop charge can be influenced by the contact time between surface and water drop and the time between subsequent drops. Models, that describe the charge generation, therefore include a surface adaptation term, very much akin to wetting adaptation phenomena. The microscopic origin of slide electrification and the surface adaptation effects is still unclear. The mechanism has been rationalized phenomenologically, assuming charge pinning at the receding contact line. Here, electron transfer, adsorption/desorption of ions, or an incomplete reorganization of the electric double layer could all lead to the observed effects. Thus, the first goal of our project is a molecular understanding of slide electrification. We will combine experiments with computer simulations and systematically change the solid-liquid interface by varying the three components that are involved: 1) the substrate, 2) the hydrophobic layer 3) and the liquid (type of liquid, salt concentration, pH). For the substrate, the dielectric permittivity and surface chemistry are the important factors contributing to slide electrification. To investigate the contribution of ionic and electronic charge transfer to the slide electrification process, we will also include carbon-based model surfaces with defined electronic conductivity. To control the grafting density and the charge diffusion at the surface, we will change the molecular weight of the hydrophobic layer and the surface roughness. In addition, we will vary the surface chemistry, e.g. with hydroxide and amine functionalized surfaces. To study the interplay between wetting adaptation and charge adaptation, we will study adaptive polymeric and polyelectrolyte surfaces in cooperation with other groups within this SPP. Thus, we want to clarify the mechanisms behind the voltage that forms at the three-phase contact line and the surface adaptation. The application of slide electrification is electricity generation, a potential source of renewable energy. Currently, the efficiency of energy conversion from kinetic droplet energy to electric power is very low: much less than 0,1 %. Therefore, the second goal of the project is to understand the fundamental limits of the slide electrification efficiency. We want to identify substrate – surface layer – liquid combinations that yield improved conversion efficiencies. This will be achieved by computational pre-screening of surface combinations, aiming at those that maximize the surface voltage and the drop charge. The top performing combinations will be then characterized experimentally.
载玻片带电描述了移动的液滴和疏水表面之间的自发电荷分离。取决于基底材料和液体,液滴积累正电荷或负电荷,基底带相反电荷。在此,液滴电荷可受表面与水滴之间的接触时间以及后续液滴之间的时间影响。因此,描述电荷产生的模型包括表面适应项,非常类似于润湿适应现象。滑动带电的微观起源和表面适应效应尚不清楚。该机制已合理化的现象,假设在后退接触线的电荷钉扎。在这里,电子转移,离子的吸附/解吸,或双电层的不完全重组都可能导致观察到的效果。因此,我们项目的第一个目标是对幻灯片带电的分子理解。我们将联合收割机实验与计算机模拟相结合,并通过改变所涉及的三个组件来系统地改变固液界面:1)基底,2)疏水层3)和液体(液体类型,盐浓度,pH值)。对于基底,介电常数和表面化学性质是导致滑动带电的重要因素。为了研究离子和电子电荷转移对载玻片带电过程的贡献,我们还将包括具有定义的电子电导率的碳基模型表面。为了控制接枝密度和电荷在表面的扩散,我们将改变疏水层的分子量和表面粗糙度。此外,我们还将改变表面化学性质,例如氢氧化物和胺官能化表面。为了研究润湿适应和电荷适应之间的相互作用,我们将与SPP内的其他组合作研究自适应聚合物和聚合物表面。因此,我们希望澄清在三相接触线和表面适应形成的电压背后的机制。滑动电气化的应用是发电,这是一种潜在的可再生能源。目前,从液滴动能到电能的能量转换效率非常低:远低于0.1%。因此,该项目的第二个目标是了解滑道电气化效率的基本限制。我们想找出能提高转换效率的基质-表面层-液体组合.这将通过表面组合的计算预筛选来实现,目标是使表面电压和液滴电荷最大化。然后将通过实验表征表现最佳的组合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Denis Andrienko其他文献

Dr. Denis Andrienko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Denis Andrienko', 18)}}的其他基金

Charge Photogeneration and extraction in polymer: fullerene bulk heterojunction organic solar cells
聚合物中的电荷光发生和提取:富勒烯体异质结有机太阳能电池
  • 批准号:
    219471294
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Photogeneration, recombination and extraction of charge carriers in organic solar cells
有机太阳能电池中载流子的光发生、重组和提取
  • 批准号:
    167900125
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Adaptive multiscale simulation for organic electronics
有机电子学的自适应多尺度模拟
  • 批准号:
    33852402
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Electroluminescent perovskite nanocrystals - From tailor-made assemblies to optoelectronic properties
电致发光钙钛矿纳米晶体 - 从定制组件到光电特性
  • 批准号:
    424708673
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Exploring the Quantum Character of Interfacial Excitations at the Donor-Acceptor Heterojunction – Towards Efficient Organic Solar Cells with Minimum Energy Offset
探索供体-受体异质结界面激发的量子特性 – 实现能量偏移最小的高效有机太阳能电池
  • 批准号:
    460766640
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Elucidating Mechanisms of Metal Sulfide-Enabled Growth of Anoxygenic Photosynthetic Bacteria Using Transcriptomic, Aqueous/Surface Chemical, and Electron Microscopic Tools
使用转录组、水/表面化学和电子显微镜工具阐明金属硫化物促进不产氧光合细菌生长的机制
  • 批准号:
    2311021
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanisms causing polarization of the asteroid surface: what are the elementary processes?
引起小行星表面极化的机制:基本过程是什么?
  • 批准号:
    23K03484
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the bacterial magnetic organelle surface proteins that functionalize the magnetosome as a biological magnetic needle
将磁小体功能化为生物磁针的细菌磁性细胞器表面蛋白的分子机制
  • 批准号:
    23H02123
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
GEO-CM:A systematic investigation of sorption mechanisms of light REEs on iron oxides: roles of mineral morphology, crystallinity, and surface sites
GEO-CM:轻稀土在氧化铁上的吸附机制的系统研究:矿物形态、结晶度和表面位点的作用
  • 批准号:
    2327527
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanisms and functions of cell surface glycoRNAs
细胞表面糖RNA的机制和功能
  • 批准号:
    10712185
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Scalable single-cell workflow for multiomic analyses of chromatin interactions, accessibility, gene expression and cell surface proteins to unravel mechanisms of cellular diversity
可扩展的单细胞工作流程,用于染色质相互作用、可及性、基因表达和细胞表面蛋白的多组学分析,以揭示细胞多样性的机制
  • 批准号:
    10604121
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Single-cell elucidation of transcriptional regulatory mechanisms that govern cell surface variation of the human symbiotic bacteria Bacteroidetes
单细胞阐明控制人类共生细菌拟杆菌细胞表面变异的转录调控机制
  • 批准号:
    10464643
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanisms of Coagulation Factor XII Recruitment and Activation at the Platelet Surface
血小板表面凝血因子 XII 招募和激活的机制
  • 批准号:
    10424806
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Single-cell elucidation of transcriptional regulatory mechanisms that govern cell surface variation of the human symbiotic bacteria Bacteroidetes
单细胞阐明控制人类共生细菌拟杆菌细胞表面变异的转录调控机制
  • 批准号:
    10682388
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanisms of surface tension reduction by pulmonary surfactant
肺表面活性物质降低表面张力的机制
  • 批准号:
    RGPIN-2019-04745
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了