Laser-active adiabatic frequency converters

激光主动绝热变频器

基本信息

项目摘要

In this project, we aim for realizing and investigating optical resonators that can store light for time scales in the millisecond region and beyond. Based on these resonators, we plan a proof-of-concept of a mechanically driven optical frequency converter having the potential of tuning the frequency of laser light by 10 THz (50 nm in the near infrared) with 100 % internal efficiency. Typically, high-quality optical resonators have decay times of a few hundreds of nanoseconds. We plan to increase this value by a factor of ten thousand, i.e. into the millisecond range. This shall be achieved by doping the resonator material with laser-active ions and optical pumping: The losses for the circulating light having the frequency, we want to change, are compensated by optical amplification. Ideally, this scheme shall allow for arbitrarily long decay times. This would come along with arbitrarily small linewidths and arbitrarily large power enhancement. The basic idea of compensating the loss for light circulating in an optical resonator by laser amplification is already around for some time. However, so far, there is no systematic study regarding the laser-activity induced increase of the decay time and the fundamental limits of this scheme. The actual tuning of the frequency of laser light in this project is based on adiabatic frequency tuning. Its acoustic analog is well known: If one plugs a guitar string and varies its length during the ring-down time, the pitch of the tone changes accordingly. This concept can be transferred to optics: Here, light is coupled into a resonator and the optical size of the latter is changed during the ring-down time. The frequency of the circulating light strictly follows the one of the varying resonance frequency. This scheme for optical frequency conversion has significant advantages over conventional methods. All intracavity photons are converted, i.e. the internal efficiency is 100 %, independent of the light intensity. This process works without taking care of phase matching and without any mode hops. With the help of resonators having millisecond decay times, mechanical tuning of the resonator length becomes an option for adiabatic frequency tuning for the first time. This will enable frequency tunings outnumbering the state of the art by two orders of magnitude. We expect that this project will strongly inspire the scientific investigation, the technical development and the application of optical resonators. With decay times in the millisecond range and beyond, they provide new possibilities for other fields of research as well. Due to the ultra-small linewidth of less than 1 kHz which comes along with the large decay time, they are for example interesting for sensing applications, where the detection limit is given by the linewidth.
在这个项目中,我们的目标是实现和研究光学谐振器,可以存储光的时间尺度在毫秒区域和超越。基于这些谐振器,我们计划机械驱动的光学频率转换器的概念验证,该转换器具有以100%的内部效率将激光频率调谐10 THz(近红外50 nm)的潜力。通常,高质量的光学谐振器具有几百纳秒的衰减时间。我们计划将该值增加一万倍,即增加到毫秒范围。这将通过在谐振器材料中掺杂激光活性离子和光学泵浦来实现:具有我们想要改变的频率的循环光的损失通过光学放大来补偿。理想情况下,该方案应允许任意长的衰减时间。这将伴随着任意小的线宽和任意大的功率增强而沿着来。通过激光放大来补偿光在光学谐振腔中循环的损失的基本思想已经存在了一段时间。然而,到目前为止,还没有系统的研究,激光活性诱导的衰减时间的增加和该计划的基本限制。本课题中激光频率的实际调谐是基于绝热频率调谐。它的声学模拟是众所周知的:如果一个插头吉他弦,并改变其长度在振铃时间,音调的音高相应变化。这个概念可以转移到光学:在这里,光被耦合到谐振器中,后者的光学尺寸在衰荡时间内发生变化。循环光的频率严格遵循变化的谐振频率之一。这种光频率转换方案与传统方法相比具有显著的优点。所有腔内光子都被转换,即内部效率为100%,与光强度无关。该过程在不考虑相位匹配并且没有任何模式跳变的情况下工作。在具有毫秒衰减时间的谐振器的帮助下,谐振器长度的机械调谐首次成为绝热频率调谐的选项。这将使频率调谐的数量超过现有技术两个数量级。我们期望该项目将对光学谐振腔的科学研究、技术发展和应用产生重大的启发。由于衰变时间在毫秒范围内甚至更长,它们也为其他研究领域提供了新的可能性。由于沿着大的衰减时间的小于1 kHz的超小线宽,它们例如对于感测应用是令人感兴趣的,其中检测极限由线宽给出。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Ingo Breunig其他文献

Privatdozent Dr. Ingo Breunig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Ingo Breunig', 18)}}的其他基金

LED pumped optical parametric oscillators
LED 泵浦光参量振荡器
  • 批准号:
    250235909
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Flüstergalerieresonatoren aus Lithiumniobat: Optimierung der Güte und Frequenzstabilität - Physikalische Grenzen
铌酸锂回音壁谐振器:质量和频率稳定性的优化 - 物理极限
  • 批准号:
    196391898
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adiabatic frequency conversion driven by the electro-optic response of potassium tantalate niobate mixed crystals
钽铌酸钾混晶电光响应驱动的绝热变频
  • 批准号:
    451963068
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Electro optic dual comb spectroscopy for mid-infrared applications
适用于中红外应用的电光双梳光谱
  • 批准号:
    490702091
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

光—电驱动下的AIE-active手性高分子CPL液晶器件研究
  • 批准号:
    92156014
  • 批准年份:
    2021
  • 资助金额:
    70.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
光-电驱动下的AIE-active手性高分子CPL液晶器件研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    70 万元
  • 项目类别:
基于寨卡病毒NS1和NS5的海洋微生物中抗病毒化合物的发现
  • 批准号:
    81973204
  • 批准年份:
    2019
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
溶藻细菌及其胞外活性物质对球形棕囊藻的溶藻机制
  • 批准号:
    41076068
  • 批准年份:
    2010
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
大规模垃圾邮件过滤中的集成化SVM增量学习机制研究
  • 批准号:
    60970081
  • 批准年份:
    2009
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
白茅根抗肾小球肾炎物质基础及免疫机制研究
  • 批准号:
    30860363
  • 批准年份:
    2008
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
预知子抗抑郁活性的物质基础与作用机制研究
  • 批准号:
    30772713
  • 批准年份:
    2007
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
岭南瑶区几种瑶族抗肝炎植物药的化学成分及生物活性研究
  • 批准号:
    20772047
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    NE/X000656/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Care on the move: active travel and the everyday mobilities of children with non-visible disabilities
移动护理:非明显残疾儿童的积极旅行和日常活动
  • 批准号:
    ES/X010880/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Active Integrated Antenna for Intelligent Arrays in 6G Non-Terrestrial Networks
用于 6G 非地面网络智能阵列的有源集成天线
  • 批准号:
    EP/Y003144/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
  • 批准号:
    2315747
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Implementation Grant: Active Societal Participation In Research and Education
合作研究:实施补助金:社会积极参与研究和教育
  • 批准号:
    2326774
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Emergent Behaviors of Dense Active Suspensions Under Shear
剪切下致密主动悬架的突现行为
  • 批准号:
    2327094
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bio-active過酸化チタンナノ粒子を併用した革新的放射線免疫療法の開発
使用生物活性过氧化钛纳米粒子开发创新放射免疫疗法
  • 批准号:
    24K10760
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了