Beyond the Standard Model contributions to the nucleon electric dipole moment

超越标准模型对核子电偶极矩的贡献

基本信息

项目摘要

The reason why the Universe we observe today is dominated by matter over antimatter is still unknown, and it represents one of the big questions of modern physics. A tiny amount of combined charge conjugation- (C) and parity- (P) symmetry breaking must have driven the evolution of the Universe to the way we observe it today. The mystery though is that the known fundamental interactions of particle physics do not contain enough CP-violation to explain the asymmetry we observe today. This observation points towards the existence of new physics containing new sources of CP-violation. Intrinsic electric dipole moments are a signature for CP-violation and the neutron provides an ideal system both experimentally and theoretically. After 65 years of attempts though we still have no experimental evidence of a neutron electric dipole moment and at the same time we still lack a precise theoretical determination. The scope of this project is to provide a precise calculation from first principles of the neutron electric dipole moment induced by new sources of CP-violation. To reach such a goal we are going to solve non-perturbatively the theory of strong interactions, Quantum Chromodynamics (QCD), defining it on a space-time lattice. To overcome the technical and conceptual difficulties that have hampered in the past this calculation, we will use a combination of innovative tools: i) the gradient flow to renormalize the CP-violating sources, and ii) a novel QCD discretization, Stabilized Wilson Fermions, to control continuum limit and chiral extrapolation. The combination of these new ideas and technical developments will allow a precise calculation of the neutron electric dipole moment stemming from new CP-violating source, thus providing the theoretical result for the interpretation of future experimental measurements and a key step in the explanation of why the Universe is currently dominated by matter.
我们今天观察到的宇宙由物质而非反物质主导的原因仍然未知,它代表了现代物理学的重大问题之一。少量的电荷共轭-(C)和宇称-(P)对称性破缺必定推动了宇宙演化成我们今天观察到的样子。但神秘之处在于,已知的粒子物理学基本相互作用并不包含足够的 CP 破坏来解释我们今天观察到的不对称性。这一观察表明新物理学的存在包含了 CP 破坏的新来源。固有电偶极矩是CP破坏的标志,中子在实验和理论上都提供了理想的系统。经过65年的尝试,我们仍然没有中子电偶极矩的实验证据,同时我们仍然缺乏精确的理论测定。该项目的范围是根据新的CP破坏源引起的中子电偶极矩的基本原理提供精确的计算。为了实现这一目标,我们将非扰动地解决强相互作用理论,即量子色动力学(QCD),并将其定义在时空晶格上。为了克服过去阻碍此计算的技术和概念困难,我们将使用创新工具的组合:i)梯度流对 CP 破坏源进行重新归一化,以及 ii)新颖的 QCD 离散化、稳定威尔逊费米子,以控制连续谱极限和手性外推。这些新想法和技术发展的结合将能够精确计算源自新的CP破坏源的中子电偶极矩,从而为解释未来的实验测量提供理论结果,并为解释为什么宇宙目前由物质主导迈出关键一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Andrea Shindler其他文献

Professor Dr. Andrea Shindler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Andrea Shindler', 18)}}的其他基金

Precise determination of the low energy constants of the chiral Lagrangian using the epsilon-regime of chiral perturbation theory
使用手性微扰理论的 epsilon 体系精确测定手性拉格朗日的低能量常数
  • 批准号:
    221381267
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamental parameters of QCD
QCD的基本参数
  • 批准号:
    151799609
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships

相似海外基金

New light physics beyond the Standard Model
超越标准模型的新光物理
  • 批准号:
    2889508
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Effective field theory and Physics Beyond the Standard Model
超越标准模型的有效场论和物理学
  • 批准号:
    2883677
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Beyond the Standard Model.. and how to get there
超越标准模型......以及如何到达那里
  • 批准号:
    ST/W003945/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
PM: Atomic Physics Investigations of Rare Earth Elements: A Prologue to New Physics Beyond the Standard Model
PM:稀土元素的原子物理研究:超越标准模型的新物理学的序言
  • 批准号:
    2110521
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Experimental Studies of the Higgs Mechanism in the Standard Model and Beyond
标准模型及其他模型中希格斯机制的实验研究
  • 批准号:
    2309613
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Exploring new physics beyond the standard model via neutrino
通过中微子探索标准模型之外的新物理
  • 批准号:
    23K03392
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploration of physics beyond the Standard Model through core-collapse supernovae
通过核心塌陷超新星探索标准模型之外的物理学
  • 批准号:
    23K13097
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an ultra-slow muon source using high power DUV laser for the exploration of physics beyond the standard model.
使用高功率 DUV 激光器开发超慢 μ 子源,用于超越标准模型的物理探索。
  • 批准号:
    23K13131
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Physics Beyond the Standard Model Explored with Gravitational Waves
用引力波探索超越标准模型的物理学
  • 批准号:
    23KF0289
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Beyond Standard Model Searches Using the IceCube Neutrino Telescope
协作研究:使用 IceCube 中微子望远镜进行超越标准模型搜索
  • 批准号:
    2310051
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了