Realizing itinerant Rydberg models through distance-selective dissipation
通过距离选择性耗散实现流动里德伯模型
基本信息
- 批准号:516378631
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:WBP Fellowship
- 财政年份:2023
- 资助国家:德国
- 起止时间:2022-12-31 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Realizing and probing quantum many-body systems is at the heart of experimental quantum simulation and quantum information. Over the past decades, ultracold quantum gases have emerged as one of the frontrunners in simulating open and closed quantum systems. For these systems, an extensive effort has been devoted in introducing long-range interactions, as they offer novel and unexplored quantum phase diagrams. Electronically excited Rydberg atoms provide a powerful platform for realizing strong and long-range interactions reaching up to few micrometers. So far, most Rydberg experiments operate in the frozen gas regime, where the motion of the atoms is irrelevant due to the comparably short lifetime of the Rydberg state. A key challenge and major aim of this proposal is to realize “itinerant” systems. In such systems, the contributions of coherent tunneling within an optical lattice and Rydberg interactions are equally relevant for the Hamiltonian. So far, the implementation of these models remained elusive as various approaches, such as Rydberg dressing, were limited by uncontrollably fast atom loss. In this study, I engineer a new type of Rydberg-induced interaction, which allows one to enter the itinerant regime while suppressing unwanted atom loss. The interaction is induced by controlled, dissipative losses through optical excitation into Rydberg macrodimer states. In the limit of strong dissipation, the many-body system is mapped onto an extended Hubbard model featuring hard-core bosonic repulsion on tunable, distance-selective lattice sites – a new long-range model that has so far not been explored experimentally. In this work, I will apply this interaction to rubidium atoms stored in a 2D optical lattice. Using our quantum gas microscope, I will investigate the dissipative and long-range correlations on the atomic level with single-site resolution. I will further explore the quench dynamics of larger quantum many-body states and investigate the build-up of long-range correlations, ultimately enabling the observation of complex quantum phases and formation of strongly correlated matter.
实现和探测量子多体系统是实验量子模拟和量子信息的核心。在过去的几十年里,超冷量子气体已经成为模拟开放和封闭量子系统的领跑者之一。对于这些系统,已经投入了大量的努力来引入长程相互作用,因为它们提供了新颖的和未探索的量子相图。电子激发的里德伯原子提供了一个强大的平台,实现强大的和远程的相互作用,达到几个微米。到目前为止,大多数里德伯实验都是在冷冻气体状态下进行的,由于里德伯态的寿命非常短,原子的运动与此无关。这一建议的一个关键挑战和主要目标是实现"巡回"系统。在这样的系统中,光晶格内的相干隧穿和里德伯相互作用的贡献对于哈密顿量同样相关。到目前为止,这些模型的实现仍然难以捉摸,因为各种方法,如Rydberg敷料,受到无法控制的快速原子损失的限制。在这项研究中,我设计了一种新型的里德伯诱导的相互作用,它允许一个人进入巡回政权,同时抑制不必要的原子损失。相互作用是通过光激发到里德堡大分子二聚体状态的受控耗散损耗引起的。在强耗散的限制下,多体系统被映射到一个扩展的哈伯德模型上,该模型在可调的距离选择性晶格位置上具有硬核玻色子排斥-这是一种新的长程模型,迄今为止还没有被实验探索过。在这项工作中,我将把这种相互作用应用于储存在二维光学晶格中的铷原子。使用我们的量子气体显微镜,我将研究原子水平上的耗散和长程关联与单点分辨率。我将进一步探索更大的量子多体状态的淬火动力学,并研究长程相关性的建立,最终使复杂的量子相的观察和强相关物质的形成成为可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Pascal Weckesser其他文献
Dr. Pascal Weckesser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Pascal Weckesser', 18)}}的其他基金
Realizing itinerant Rydberg models through distance-selective dissipation
通过距离选择性耗散实现流动里德伯模型
- 批准号:
516136618 - 财政年份:
- 资助金额:
-- - 项目类别:
WBP Position
相似海外基金
Theoretical study of photo-induced control and emergent itinerant responses in electrically-active antiferromagnets
电活性反铁磁体光致控制和紧急巡回响应的理论研究
- 批准号:
23K13058 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Creation of Itinerant Molecule Materials for Organic Spin Photonics
用于有机自旋光子学的流动分子材料的创建
- 批准号:
22H02158 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Study of the Concept of Legitimacy of Musical Performing Arts in Shoichi Ozawa : The Case of the LP Record Collection "Document / Itinerant Arts of Japan"
小泽昭一音乐表演艺术合法性观念研究——以LP唱片集《日本文献/巡回艺术》为例
- 批准号:
20K21931 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on new functional enhancement methods of itinerant ferromagnets in transition-metal pnictides
过渡金属磷族元素中巡回铁磁体功能增强新方法研究
- 批准号:
20K05663 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of Ultra-High Field Properties in Itinerant Electron Systems by using High-Speed Magnetoresistance Measurement
使用高速磁阻测量研究巡回电子系统的超高场特性
- 批准号:
20K20892 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Photoinduced spin dynamics in correlated itinerant magnets
相关巡回磁体中的光致自旋动力学
- 批准号:
19K23419 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Controlled dynamics in crafted spin arrays coupled to itinerant electron baths (B09*)
与流动电子浴耦合的精心设计的自旋阵列中的受控动力学 (B09*)
- 批准号:
426667095 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Collaborative Research Centres
CAREER: Monopole Superconductivity and Ferromagnetism of Itinerant Electrons
职业:单极超导和流动电子的铁磁性
- 批准号:
1848349 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Elucidation of itinerant magnetism in narrow-gap semiconductor FeSi by investigating ultra-high-field properties
通过研究超高场特性阐明窄带隙半导体 FeSi 中的巡回磁性
- 批准号:
19K03710 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realizing Rydberg induced long-range interactions in itinerant lattice systems
实现里德伯在流动晶格系统中诱导的长程相互作用
- 批准号:
428456515 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes