Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
基本信息
- 批准号:22KJ2801
- 负责人:
- 金额:$ 2.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-03-08 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
本年度は弱い消散構造を伴う半線形波動方程式の初期値問題を2次元ユークリッド空間において考察した.非線形消散構造を特徴づける「Agemi型構造条件」の下で存在が保障される時間大域解について,その消散構造が部分的に退化する状況での解の時刻無限大における挙動には多くの未解決部分が残っている.方程式が単独である場合には,解のエネルギーに対する上からの評価が得られており,特に非線形項がAgemi条件を満たすが零条件を満たさない場合には解のエネルギーは時間減衰することが知られている.一方で下からの評価やその減衰率の最適性に関しては未知であった.本年度は佐川侑司氏,佐藤拓也氏との共同研究で,非線形項がAgemi条件を満たすが零条件を満たさない場合の解のエネルギーの下からの評価を与えた.さらに,消散構造が部分的に退化している場合に対して,既に得られていた上からの評価を改善した.より具体的には,既知の結果では解のエネルギーの上からの減衰率は非線形項の構造から定まる正定数λと任意に小さい正の数δを用いてlog tの-λ+δ乗と表すことができていた.本年度の研究では,消散構造の退化と対応する条件を満たす初期値に対する解のエネルギーが下からlog tの-λ乗で評価できることを示し,さらに上からの評価に関しても「δの損失」を取り除くことに成功した.これらにより,Agemi条件を満たす単独半線形波動方程式に対して,その消散構造が部分的に退化している場合の解のエネルギー減衰率の最適性を得ることができた.
This year, the weak wave dissipation is accompanied by the initial problem of the half-line wave dynamic equation, the two-dimensional problem, the space flight survey, the non-linear dissipation model, the Agemi generation condition, and the existence of protective time domain solutions under the Agemi generation condition. There is no limit on the time of solution of the degradation condition of the part of the system. The equation only applies to solve the problem of the disabled part of the system. The special non-linear Agemi condition, zero, zero, The non-shape item Agemi condition, zero condition and zero condition. It is known that the results show that the decay rate of non-linear terms is determined by using the table "log t"-λ + δ. This year's research is conducted in this year. To dissipate the degradation of environmental pollution conditions in the early days of the experiment, the log t-λ wave was detected in the early stage, and the equation of motion of the half-shape wave was detected under the Agemi condition. In the part of the dissipation and fabrication part, the degradation is the most important.
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the derivative nonlinear Schrödinger equation with weakly dissipative structure
- DOI:10.1007/s00028-020-00634-6
- 发表时间:2020-04
- 期刊:
- 影响因子:1.4
- 作者:Chunhua Li;Y. Nishii;Yuji Sagawa;Hideaki Sunagawa
- 通讯作者:Chunhua Li;Y. Nishii;Yuji Sagawa;Hideaki Sunagawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
西井 良徳其他文献
西井 良徳的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}