Stability of Generalised Equations and Variational Systems

广义方程和变分系统的稳定性

基本信息

  • 批准号:
    DP160100854
  • 负责人:
  • 金额:
    $ 13.91万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Projects
  • 财政年份:
    2016
  • 资助国家:
    澳大利亚
  • 起止时间:
    2016-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This project seeks to advance a new mathematical theory of variational analysis which may lead to applications in optimisation. The emphasis will be on extensions of regularity concepts appropriate for studying stability (the ‘radius of good behaviour’) of solutions to optimisation problems, particularly those of semi-infinite optimisation and programs with equilibrium constraints, when standard assumptions are not satisfied. The expected outcomes may have an impact in enhancing the convergence of numerical methods and facilitating the post-optimal analysis of solutions. It may also generate new tools for increasing efficiencies and cost reductions in engineering, logistics, economics, financial systems, and environmental science.
该项目旨在推进一个新的数学理论的变分分析,这可能会导致应用优化。重点将是适当的研究稳定性(“半径良好的行为”)的解决方案的优化问题,特别是那些半无限优化和平衡约束的程序,当标准的假设不满足的正则性概念的扩展。预期的结果可能会产生影响,在提高数值方法的收敛性,并促进解决方案的后优化分析。它还可能产生新的工具,用于提高工程,物流,经济,金融系统和环境科学的效率和成本降低。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prof Alexander Kruger其他文献

Prof Alexander Kruger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prof Alexander Kruger', 18)}}的其他基金

Stationarity and regularity in variational analysis with applications to optimization
变分分析中的平稳性和规律性及其在优化中的应用
  • 批准号:
    DP110102011
  • 财政年份:
    2011
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Discovery Projects

相似海外基金

Generalised method for determining IO equations of four bar kinematic chains of arbitrary architecture: planar, spherical, spatial
确定任意结构(平面、球形、空间)的四杆运动链 IO 方程的通用方法
  • 批准号:
    546523-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Generalised method for determining IO equations of four bar kinematic chains of arbitrary architecture: planar, spherical, spatial
确定任意结构(平面、球形、空间)的四杆运动链 IO 方程的通用方法
  • 批准号:
    546523-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008854/1
  • 财政年份:
    2021
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008897/1
  • 财政年份:
    2021
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008889/1
  • 财政年份:
    2021
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008919/1
  • 财政年份:
    2021
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V009060/1
  • 财政年份:
    2021
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V009389/1
  • 财政年份:
    2021
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Research Grant
Generalised method for determining IO equations of four bar kinematic chains of arbitrary architecture: planar, spherical, spatial
确定任意结构(平面、球形、空间)的四杆运动链 IO 方程的通用方法
  • 批准号:
    546523-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Generalised Polarisation Tensors for Maxwell's Equations
麦克斯韦方程组的广义偏振张量
  • 批准号:
    EP/K039865/1
  • 财政年份:
    2013
  • 资助金额:
    $ 13.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了