Studies on Path Independent Integrals in Nonlinear Dynamic Fracture Mechanics

非线性动态断裂力学中路径无关积分的研究

基本信息

  • 批准号:
    60550072
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1985
  • 资助国家:
    日本
  • 起止时间:
    1985 至 1986
  • 项目状态:
    已结题

项目摘要

Recently we have derived a path independent integral <T^*> which may give a unified theoretical background for linear (elastic) and nonlinear (elastoplastic) dynamic fracture mechanics. In this respect it is very important to find the relations between <T^*> integral and fracture process zone which exists in the vicinity of the crack-tip. In this research project, the invariance of <T^*> integral with respect to the shape of process zone was analytically and numerically verified.First, for an elastodynamically propagating crack, only the <T^*> integral (or equivalently J' integral which has the physical meaning of energy release rate) gives an invariant integral calue regardless of the shape of infinitesimal process zone. Other types of path independent integrals which are not equivalent to the energy release rate, depend on the shape of process zone. Furthermore, in the results of finite element simulation, it was found that the <T^*> integral closely relates with the energy flow into … More the process zone.For the finite element simulation of dynamic crack propagation, a comparison was made on stationary mesh procedure with various nodal release mechanisms and a simple moving mesh procedure. For elastic problems the stress intensity fractures were evaluated by the path independent J'integral. For simple moving mesh procedure is better suited for the simulation of elastodynamic crack propagation although difficulties were observed in the application of moving mesh procedure to elastoplastic dynamic crack propagation. Among the model release schemes, the linear relaxation scheme gives best results for elastodynamic as well as elastoplastic dynamic crack propagation.For cracks subject to various impact stress waves, the behavior of <T^*> integral was also investigated. In the case of a step-type stress wave loading, <T^*> integral varies linearly with time variation for any constitutive models including linear-elastic, elastic -viscoplastic and rate-independent elastoplastic cases. As the fluidity parameter of material increases, the time-slope of <T^*> integral becomes smaller and approaches to the rate-independent plastic behaviorIt was also found that the experimental measurement of <T^*> integral can be done by measuring the area under the load versus crack-opening displacement curve in an compact tension specimen. Less
最近我们导出了一个与路径无关的积分<T^*>,它可以为线性(弹性)和非线性(弹塑性)动态断裂力学提供一个统一的理论背景。在这方面,找到<T^*>积分与裂纹尖端附近断裂过程区的关系是非常重要的。本研究从解析和数值两方面验证了<T^*>积分对过程区形状的不变性:首先,对于弹性动力学扩展裂纹,只有<T^*>积分(或等价的J'积分,它具有能量释放率的物理意义)给出一个与无穷小过程区形状无关的不变积分值;其他类型的路径无关积分不等价于能量释放率,取决于过程区的形状。此外,在有限元模拟的结果中,发现<T^*>积分与能量流入密切相关, ...更多信息 在裂纹动态扩展的有限元模拟中,对采用不同节点释放机制的静态网格方法和简单的动网格方法进行了比较。对于弹性问题,应力强度断裂由路径无关的J '积分评估。对于简单的移动网格程序是更适合于模拟弹塑性动态裂纹扩展,虽然观察到的困难,在弹塑性动态裂纹扩展的移动网格程序的应用。在模型释放方案中,线性松弛方案对弹塑性动态裂纹扩展的模拟效果最好,同时对不同冲击应力波作用下裂纹的<T^*>积分特性进行了研究.在阶跃应力波作用下,对于任何本构模型,包括线弹性、弹粘塑性和率无关弹塑性,<T^*>积分都随时间线性变化。随着材料流动性参数的增大,<T^*>积分的时间斜率变小,接近于与率无关的塑性行为。同时发现,<T^*>积分的实验测量可以通过测量紧凑拉伸试样的载荷-裂纹张开位移曲线下的面积来实现。少

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
西岡俊久: 日本機械学会講演論文集(日本機械学会論文集(A編)). (1987)
Toshihisa Nishioka:日本机械工程师学会会议记录(日本机械工程师学会会议记录(A 版))(1987 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nishioka, M. Kobashi and S. N. Atluri: "Computational Studies on Path Independent Integrals for Nonlinear Dynamic Crack Problems" Computational Mechanics.
T.Nishioka、M. Kobashi 和 S. N. Atluri:“非线性动态裂纹问题的路径无关积分的计算研究”计算力学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nishioka: Proceedings of First World Congress on Computational Mechanics,September 22-26,1986,Austin Texas. Vol.【II】. (1986)
T. Nishioka:第一届世界计算力学大会论文集,1986 年 9 月 22-26 日,德克萨斯州奥斯汀,第 1986 卷。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nishioka, H.Fujihara and H. Yagami: "Finite Element Analyses of Stress Intensity Factors in Dynamic Crack Propagation Using Path Independent J'Integral" Proceeding of International Conference on Role of Fracture mechanics in Modern Technology, June 2-6,
T.Nishioka、H.Fujihara 和 H. Yagami:“使用路径无关 JIntegral 对动态裂纹扩展中的应力强度因子进行有限元分析”断裂力学在现代技术中的作用国际会议论文集,6 月 2-6 日,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Nishioka: "Nonlinear Fast Crack Propagation and Path Independent <T^*> Integral" Proceedings of the Fourth Fracture Mechanics Symposium. (1987)
T. Nishioka:“非线性快速裂纹传播和路径独立 <T^*> 积分”第四届断裂力学研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHIOKA Toshihisa其他文献

NISHIOKA Toshihisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHIOKA Toshihisa', 18)}}的其他基金

Fundamental Studies on the Limiting Velocity of Fast Dynamic Fracture in Solids
固体快速动态断裂极限速度的基础研究
  • 批准号:
    14205019
  • 财政年份:
    2002
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fundamental Study on Application-Phase Numerical Prediction Method for Dynamic Fracture Propagation Paths
动态裂缝扩展路径应用相数值预测方法基础研究
  • 批准号:
    12450051
  • 财政年份:
    2000
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Basic Studies on Dynamic Interfacial Fracture Mechanics
动态界面断裂力学基础研究
  • 批准号:
    08455063
  • 财政年份:
    1996
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了