Mathematical Logic

数理逻辑

基本信息

项目摘要

We organized five working groups. the groups exchanged informations each other, and opened meetings on several occasions. In those meetings, researchers discussed and announced results of their researches.In the followings, we list up the main results of the groups. Group I(Proof theory): The relations between subsystems of arithmetic with weak inductive definitions and ordinals were explained. Several results concerned with refrection pronciples and Paris-Harrington principles were obtained. Generalized built-up systems of fundamental sequences were proposed.Group II(Set theory and model theory): A set theory with modality and a set theory with intensionality were proposed. Assuming existence of several large cardinals, interesting abelian groups were constructed. Several properties of -stable rings were explained.Group III(Constructive mathematics): A theory of Fuzzy computability was made up. A consistency proof of Beeson's system PRS was given. A two-storied theory of transfinite mechanisms was proposed.Group IV(Theory of logical structures): It was shown that modal operators are interpretable by quantifiers in intermediate predlcate logics. The relation between the syntax and the semantics of logics without a part of structural rules, -calculus, and categorical grammars were uniformly discussed.Group V(Theory of non-standard universes): In a nonfinitary logic, an interpretation of infinitesimal caculus was obtained. Several properties of iterated polynomials in nonstandard analysis were explained. For Hilbert irreducibility theorem, a condition for that Z-If is finite was given, and it was shown that the bound is given by a polynomial. A nonstandard set theory, in which there are models of the five nonstandard set theories NST, IST, NSTE, NS2 and *NST, respectively, was proposed.
我们组织了五个工作组。各小组相互交换了信息,并举行了多次会议。在这些会议上,研究人员讨论并宣布了他们的研究成果。下面,我们列出了这些小组的主要成果。第一组(证明论):说明了具有弱归纳定义的算术子系统与序数之间的关系。得到了与反射原理和Paris-Harrington原理有关的几个结果。第二组(集合论与模型论):提出了具有模态性的集合论和具有内涵性的集合论。假设存在多个大基数,构造了有趣的阿贝尔群。第三组(构造数学):建立了Fuzzy可计算性理论。给出了Beeson系统PRS的一致性证明。第四组(逻辑结构理论):证明了模态算子在中间谓词逻辑中可由量词解释。对不含结构规则的逻辑、微积分和范畴文法的语法和语义之间的关系进行了统一的讨论。第V组(非标准论):在非有限逻辑中,得到了无穷小演算的一个解释。说明了非标准分析中迭代多项式的几个性质。对于Hilbert不可约性定理,给出了Z-If有限的条件,并证明了其界由多项式给出.提出了一种非标准集合论,其中分别有NST、IST、NSTE、NS2和 * NST五种非标准集合论的模型.

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hisao Tanaka: Axcim of Choice in Mathematics. Yusei Sya, 238 (1987)
Hisao Tanaka:数学领域的选择 Axcim。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
八杉満利子: Tsukuba Jourmal of Mathematics. 12. 97-114 (1988)
安来真理子:筑波数学杂志。12. 97-114 (1988)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
小野寛晰: Proc of Heyting '88 Conference.
Hiroaki Ono:Heyting 88 会议记录。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
梅沢敏郎: Reports of Fuculty of Science,Shizuoka University. 23. 1-7 (1989)
Toshiro Umezawa:静冈大学理学部报告,23. 1-7 (1989)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
田中尚夫: "選択公理と数学" 遊星社, 238 (1987)
田中奈绪:《选择公理和数学》Yuseisha,238 (1987)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UESU Tadahiro其他文献

UESU Tadahiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Categorical logic as a foundation of mathematics
分类逻辑作为数学的基础
  • 批准号:
    347834-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Postgraduate Scholarships - Master's
Categorical logic as a foundation of mathematics
分类逻辑作为数学的基础
  • 批准号:
    347834-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Aspects of a structuralist foundation of mathematics
数学结构主义基础的各个方面
  • 批准号:
    9371-1998
  • 财政年份:
    2001
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Discovery Grants Program - Individual
Aspects of a structuralist foundation of mathematics
数学结构主义基础的各个方面
  • 批准号:
    9371-1998
  • 财政年份:
    2000
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Discovery Grants Program - Individual
Aspects of a structuralist foundation of mathematics
数学结构主义基础的各个方面
  • 批准号:
    9371-1998
  • 财政年份:
    1999
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Discovery Grants Program - Individual
Aspects of a structuralist foundation of mathematics
数学结构主义基础的各个方面
  • 批准号:
    9371-1998
  • 财政年份:
    1998
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Discovery Grants Program - Individual
Reflections on the Foundation of Mathematics Symposium, Stanford California
对加州斯坦福大学数学研讨会基础的思考
  • 批准号:
    9813766
  • 财政年份:
    1998
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Foundation of Mathematics and its Applications
数学科学:数学基础及其应用
  • 批准号:
    8800314
  • 财政年份:
    1988
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Foundation of Mathematics and Its Applications
数学科学:数学基础及其应用
  • 批准号:
    8421214
  • 财政年份:
    1985
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Continuing Grant
FOUNDATION OF MATHEMATICS
数学基础
  • 批准号:
    7353302
  • 财政年份:
    1973
  • 资助金额:
    $ 5.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了